Skip to main content
Log in

Gap Functions and Global Error Bounds for Generalized Mixed Variational Inequalities on Hadamard Manifolds

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, a generalized mixed variational inequality on Hadamard manifolds is introduced and studied. Some gap functions for the generalized mixed variational inequality on Hadamard manifolds are obtained under suitable conditions. By using these gap functions, global error bounds for the generalized mixed variational inequality are derived on Hadamard manifolds. The main results presented in this paper generalize and improve corresponding known results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harker, P.T., Pang, J.S.: Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory algorithms and applications. Math. Prog. 48, 161–220 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  2. Zhao, L., Pafermos, S.: General economic equilibrium and variational inequalities. Oper. Res. Lett. 10, 369–376 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementary Problems. Springer, New York (2003)

    Google Scholar 

  4. Larsson, T., Patriksson, M.: A class of gap functions for variational inequalities. Math. Prog. 64, 53–79 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fukushima, M.: Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems. Math. Prog. 53, 99–110 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Yamashita, N., Fukushima, M.: Equivalent unconstrained minimization and global error bounds for variational inequality problems. SIAM J. Control Optim. 35, 273–284 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Li, G., Ng, K.F.: On generalized \(D\)-gap functions for nonsmooth and nonmonotone variational inequality problem. SIAM J. Optim. 20, 667–690 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Tan, L.L.: Regularized gap functions for nonsmooth variational inequality problems. J. Math. Anal. Appl. 334, 1022–1038 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Yang, X.Q., Yao, J.C.: Gap functions and existence of solutions to set-valued vector variational inequalities. J. Optim. Theory Appl. 115, 407–417 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Aussel, D., Correa, R., Marechal, M.: Gap functions for quasivariational inequalities and generalized Nash equilibrium problems. J. Optim. Theory Appl. 151, 474–488 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Aussel, D., Dutta, J.: On gap functions for multivalued Stampacchia variational inequalities. J. Optim. Theory Appl. 149, 513–527 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Peng, J.M.: Equivalence of variational inequality problems to unconstrained optimization. Math. Prog. 78, 347–356 (1997)

    MATH  Google Scholar 

  13. Ng, K.F., Tan, L.L.: Error bounds of regularized gap functions for nonsmooth variational inequality problems. Math. Prog. 110, 405–429 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Solodov, M.V.: Merit functions and error bounds for generalized variational inequalities. J. Math. Anal. Appl. 287, 405–414 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fan, J.H., Wang, X.G.: Gap functions and global error bounds for set-valued variational inequalities. J. Comput. Appl. Math. 233, 2956–2965 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Tang, G.J., Huang, N.J.: Gap functions and global error bounds for set-valued mixed variational inequalities. Taiwan. J. Math. 17, 1267–1286 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, J., Mastroeni, G.: Vector variational inequalities involving set-valued mappings via scalarization with applications to error bounds for gap functions. J. Optim. Theory Appl. 145, 355–372 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Walter, R.: On the metric projections onto convex sets in Riemannian spaces. Arch. Math. 25, 91–98 (1974)

    Article  MATH  Google Scholar 

  19. Udriste, C.: Convex functions and optimization methods on Riemannian manifolds. In: Mathematics and its Applications, vol. 297. Kluwer Academic Publishers, Dordrecht (1994)

  20. Németh, S.Z.: Five kinds of monotone vector fields. PUMA 9(3–4), 417–428 (1998)

    MATH  Google Scholar 

  21. Németh, S.Z.: Monotone vector fields. Publ. Math. Debrecen 54(3–4), 437–449 (1999)

    MathSciNet  MATH  Google Scholar 

  22. Németh, S.Z.: Variational inequalities on Hadamard manifolds. Nonlinear Anal. 52, 1491–1498 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ferreira, O.P., Oliveira, P.R.: Proximal point algorithm on Riemannian manifolds. Optimization 51, 257–270 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, C., Wang, J.H.: Newton’s method on Riemannian manifolds: smale’s point estimate theory under the \(\gamma \)-condition. IMAJ. Numer. Anal. 26, 228–251 (2006)

    Article  Google Scholar 

  25. Ferreira, O.P.: Dini derivative and a characterization for Lipschitz and convex functions on Riemannian manifolds. Nonlinear Anal. 68, 1517–1528 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ferreira, O.P., Pérez, L.R.L., Németh, S.Z.: Singularities of monotone vector fields and an extragradient-type algorithm. J. Global Optim. 31, 133–151 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, C., López, G., Martín-Márquez, V.: Monotone vector fields and the proximal point algorithm on Hadamard manifolds. J. Lond. Math. Soc. 79(2), 663–683 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. PapaQuiroz, E.A., Oliveira, P.R.: Proximal point methods for quasiconvex and convex functions with Bregman distances on Hadamard manifolds. J. Convex Anal. 16(1), 46–69 (2009)

    MathSciNet  Google Scholar 

  29. Bento, G.C., Ferreira, O.P., Oliveira, P.R.: Local convergence of the proximal point method for a special class of nonconvex functions on Hadamard manifolds. Nonlinear Anal. 73, 564–572 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Azagra, D., Ferrera, J., López-Mesas, M.: Nonsmooth analysis and Hamilton-Jacobi equations on Riemannian manifolds. J. Funct. Anal. 220, 304–361 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ferreira, O.P., Oliveira, P.R.: Subgradient algorithm on Riemannian manifolds. J. Optim. Theory Appl. 97, 93–104 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  32. Bento, G.C., Melo, J.G.: Subgradient method for convex feasibility on Riemannian manifolds. J. Optim. Theory Appl. 152, 773–785 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Barani, A., Pouryayevali, M.R.: Invariant monotone vector fields on Riemannian manifolds. Nonlinear Anal. 70, 1850–1861 (2008)

    Article  MathSciNet  Google Scholar 

  34. Rapcsák, T.: Smooth Nonlinear Optimization in \(\mathbb{R}^{n}\). Nonconvex Optimization and its Applications. Kluwer Academic Publishers, Dordrecht (1997)

    Book  Google Scholar 

  35. Rapcsák, T.: Geodesic convexity in nonlinear optimization. J. Optim. Theory Appl. 69, 169–183 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  36. Li, S.L., Li, C., Liou, Y.C., Yao, J.C.: Existence of solutions for variational inequalities on Riemannian manifolds. Nonlinear Anal. 71, 5695–5706 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Tang, G.J., Huang, N.J.: Korpelevich’s method for variational inequality problems on Hadamard manifolds. J. Global Optim. 54, 493–509 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Tang, G.J., Zhou, L.W., Huang, N.J.: The proximal point algorithm for pseudomonotone variational inequalities on Hadamard manifolds. Optim. Lett. 7, 779–790 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhou, L.W., Huang, N.J.: Generalized KKM Theorems on Hadamard Manifolds with Applications (2009). http://www.paper.edu.cn/index.php/default/releasepaper/content/200906-669

  40. Zhou, L.W., Huang, N.J.: Existence of solutions for vector optimization on Hadamard manifolds. J. Optim. Theory Appl. 157, 44–53 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  41. Li, X.B., Huang, N.J.: Generalized vector quasi-equilibrium problems on Hadamard manifolds. Optim. Lett. 9, 155–170 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. Li, C., Mordukhovich, B.S., Wang, J.H., Yao, J.C.: Weak sharp minima on Riemannian manifolds. SIAM J. Optim. 21, 1523–1560 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  43. Klingenberg, W.: A Course in Differential Geometry. Springer, Berlin (1978)

    Book  MATH  Google Scholar 

  44. Chavel, I.: Riemannian Geometry-A Modern Introduction. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  45. Sakai, T.: Riemannian Geometry. In: Translations of Mathematical Monographs, vol. 149. American Mathematical Society, Providence, RI (1996)

  46. Li, C., López, G., Martín-Márquez, V., Wang, J.H.: Resolvents of set-valued monotone vector fields in Hadamard manifolds. Set Valued Anal. 19, 361–383 (2011)

    Article  MATH  Google Scholar 

  47. Bridson, M.R., Haefliger, A.: Metric Spaces of Non-positive Curvature. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  48. Aubin, J.P., Frankowska, H.: Set-Valued Analysis. Birkhauser, Boston (1990)

    MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the editor and the referees for their valuable comments and suggestions. This work was supported by the National Natural Science Foundation of China (11171237, 11471230).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan-jing Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Xb., Zhou, Lw. & Huang, Nj. Gap Functions and Global Error Bounds for Generalized Mixed Variational Inequalities on Hadamard Manifolds. J Optim Theory Appl 168, 830–849 (2016). https://doi.org/10.1007/s10957-015-0834-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-015-0834-5

Keywords

Mathematics Subject Classification

Navigation