Skip to main content
Log in

Euler–Lagrange Equations for Lagrangians Containing Complex-order Fractional Derivatives

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

Two variational problems of finding the Euler–Lagrange equations corresponding to Lagrangians containing fractional derivatives of real- and complex-order are considered. The first one is the unconstrained variational problem, while the second one is the fractional optimal control problem. The expansion formula for fractional derivatives of complex-order is derived in order to approximate the fractional derivative appearing in the Lagrangian. As a consequence, a sequence of approximated Euler–Lagrange equations is obtained. It is shown that the sequence of approximated Euler–Lagrange equations converges to the original one in the weak sense as well as that the sequence of the minimal values of approximated action integrals tends to the minimal value of the original one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atanackovic, T.M., Konjik, S., Pilipovic, S., Zorica, D.: Complex order fractional derivatives in viscoelasticity. Preprint ArXiv:1407.8294v1 (2014)

  2. Atanackovic, T.M., Stankovic, B.: An expansion formula for fractional derivatives and its applications. Fract. Calc. Appl. Anal. 7, 365–378 (2004)

    MathSciNet  MATH  Google Scholar 

  3. Atanackovic, T.M., Stankovic, B.: On a numerical scheme for solving differential equations of fractional order. Mech. Res. Commun. 35, 429–438 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Atanackovic, T.M., Janev, M., Konjik, S., Pilipovic, S., Zorica, D.: Expansion formula for fractional derivatives in variational problems. J. Math. Anal. Appl. 409, 911–924 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Vujanovic, B.D., Atanackovic, T.M.: An Introduction to Modern Variational Techniques in Mechanics and Engineering. Birkhäuser, Boston (2004)

    Book  MATH  Google Scholar 

  6. Agrawal, O.P.: Formulation of Euler–Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272, 368–379 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Riewe, F.: Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E 53, 1890–1899 (1996)

    Article  MathSciNet  Google Scholar 

  8. Riewe, F.: Mechanics with fractional derivatives. Phys. Rev. E 55, 3582–3592 (1997)

    Article  MathSciNet  Google Scholar 

  9. Agrawal, O.P.: A general formulation and solution scheme for fractional optimal control problems. Nonlinear Dyn. 38, 323–337 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Özdemir, N., Agrawal, O.P., Iskender, B.B., Karadeniz, D.: Fractional optimal control of a 2-dimensional distributed system using eigenfunctions. Nonlinear Dyn. 55, 251–260 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Atanackovic, T.M., Konjik, S., Pilipovic, S.: Variational problems with fractional derivatives: Euler–Lagrange equations. J. Phys. A Math. Theor. 41, 095,201–095,213 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dacorogna, B.: Direct Methods in the Calculus of Variations. Springer, New York (2008)

    MATH  Google Scholar 

  13. Arthurs, A.M.: Complementary Variational Principles. Clarendon Press, Oxford (1980)

    MATH  Google Scholar 

  14. Atanackovic, T.M., Janev, M., Pilipovic, S., Zorica, D.: Complementary variational principles with fractional derivatives. Acta Mech. 223, 685–704 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Atanackovic, T.M., Konjik, S., Pilipovic, S., Simic, S.: Variational problems with fractional derivatives: invariance conditions and Noether theorem. Nonlinear Anal. 71, 1504–1517 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Frederico, G.S.F., Torres, D.F.M.: A formulation of Nöther’s theorem for fractional problems of the calculus of variations. J. Math. Anal. Appl. 334, 834–846 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Frederico, G.S.F., Torres, D.F.M.: Fractional Noether’s theorem in the Riesz–Caputo sense. Appl. Math. Comput. 217, 1023–1033 (2010)

    MathSciNet  MATH  Google Scholar 

  18. Long, Z.X., Zhang, Y.: Noether’s theorem for fractional variational problem from El-Nabulsi extended exponentially fractional integral in phase space. Acta Mech. 225, 77–90 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lotfi, A., Yousefi, S.A.: Epsilon–Ritz method for solving a class of fractional constrained optimization problems. J. Optim. Theory Appl. 163, 884–899 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Almeida, R., Pooseh, S., Torres, D.F.M.: Computational Methods in the Fractional Calculus of Variations. Imperial College Press, London (2015)

    Book  MATH  Google Scholar 

  21. Atanackovic, T.M., Pilipovic, S., Stankovic, B., Zorica, D.: Fractional Calculus with Applications in Mechanics: Wave Propagation, Impact and Variational Principles. Wiley-ISTE, London (2014)

    Book  MATH  Google Scholar 

  22. Malinowska, A.B., Odzijewicz, T., Torres, D.F.M.: Advanced Methods in the Fractional Calculus of Variations. Springer-Briefs in Applied Sciences and Technology. Springer, Heidelberg (2015)

    Google Scholar 

  23. Malinowska, A.B., Torres, D.F.M.: Introduction to the Fractional Calculus of Variations. Imperial College Press, London (2012)

    Book  MATH  Google Scholar 

  24. El-Nabulsi, R.A.: Universal fractional Euler–Lagrange equation from a generalized fractional derivate operator. Cent. Eur. J. Phys. 9, 250–256 (2011)

    Google Scholar 

  25. Bender, C.M., Brody, D.C., Chen, J.H., Furlan, E.: \({\cal PT}\)-symmetric extension of the Korteweg-de Vries equation. J. Phys. A Math. Theor. 40, F153–F160 (2007)

    Article  MATH  Google Scholar 

  26. Bender, C.M., Holm, D.D., Hook, D.W.: Complexified dynamical systems. J. Phys. A Math. Theor. 40, F793–F804 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Atanackovic, T.M., Janev, M., Konjik, S., Pilipovic, S., Zorica, D.: Vibrations of an elastic rod on a viscoelastic foundation of complex fractional Kelvin–Voigt type. Meccanica 50, 1679–1692 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier B.V, Amsterdam (2006)

    MATH  Google Scholar 

  29. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives. Gordon and Breach, Amsterdam (1993)

    MATH  Google Scholar 

  30. Ito, K., Kunisch, K.: Lagrange Multiplier Approach to Variational Problems and Applications. SIAM, Philadelphia (2008)

    Book  MATH  Google Scholar 

  31. Klimek, M., Agrawal, O.P.: Fractional Sturm–Liouville problem. Comput. Math. Appl. 66, 795–812 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Klimek, M.: On Solutions of Linear Fractional Differential Equations of a Variational Type. The Publishing Office of Czestochowa University of Technology, Czestochowa (2009)

    Google Scholar 

Download references

Acknowledgments

This research is supported by the Serbian Ministry of Education and Science Projects 174005, 174024, III44003 and TR32035, as well as by the Secretariat for Science of Vojvodina Project 114-451-947.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dušan Zorica.

Appendix

Appendix

We prove Proposition 2.1 by writing the left Riemann–Liouville fractional derivative of complex-order \(\gamma =\alpha +\mathrm {i}\beta \), \( \alpha \in ] 0,1[\), given by (2), as

$$\begin{aligned}&{}_{0}{\mathcal {D}}_{t}^{\gamma }y\left( t\right) \\&\quad =\frac{1}{\varGamma _{\mathrm {re}}^{2}+\varGamma _{\mathrm {im}}^{2}}\frac{\mathrm {d}}{\mathrm {d}t}\int _{0}^{t}\frac{ y\left( \tau \right) }{\left( t-\tau \right) ^{\alpha }}\left( \varGamma _{\mathrm {re}}\cos \left( \log \left( t-\tau \right) ^{\beta }\right) +\varGamma _{\mathrm {im}}\sin \left( \log \left( t-\tau \right) ^{\beta }\right) \right) \mathrm { d}\tau , \end{aligned}$$

where

$$\begin{aligned} \varGamma _{\mathrm {re}}=\int _{0}^{\infty }\mathrm {e}^{-x}x^{\alpha }\cos \left( \log x^{\beta }\right) \mathrm {d}x\;\;\text {and}\;\;\varGamma _{\mathrm {im}}=\int _{0}^{\infty }\mathrm {e}^{-x}x^{\alpha }\sin \left( \log x^{\beta }\right) \mathrm {d}x, \end{aligned}$$

are real and imaginary parts of \(\varGamma \left( 1-\gamma \right) \), respectively. In order to obtain integration by parts formula (4), let \(f,g\in {\mathrm {AC}}\left( \left[ 0,T\right] \right) \). Recall, then the first derivatives of f and g are integrable on [0, T]. We also use that the convolution of an absolutely continuous function on [0, T] and the integrable function on [0, t], \( t<T\) is an absolutely continuous on [0, T] along with the fact that the partial integration holds for absolutely continuous functions, i.e., \(\int _0^{t}f(\tau )\frac{\mathrm {d}}{\mathrm {d}\tau }g(\tau )d\tau = \left. f(\tau )g(\tau )\right| _{0}^{t} - \int _0^{t}g(\tau )\frac{\mathrm {d}}{\mathrm {d}\tau }f(\tau )d\tau \), for all \( t\in [0,T]\), if \( f,g \in {\mathrm {AC}}([0,T])\). Consider the integrals

$$\begin{aligned}&\int _{0}^{T}f\left( t\right) \,{}_{0}{\mathcal {D}}_{t}^{\gamma }g\left( t\right) \mathrm {d}t\nonumber \\&\quad =\frac{\varGamma _{\mathrm {re}}}{\varGamma _{\mathrm {re}}^{2}+\varGamma _{\mathrm {im}}^{2} }\int _{0}^{T}f\left( t\right) \left( \frac{\mathrm {d}}{\mathrm {d}t} \int _{0}^{t}g\left( \tau \right) \frac{\cos \left( \log \left( t-\tau \right) ^{\beta }\right) }{\left( t-\tau \right) ^{\alpha }}\mathrm {d}\tau \right) \mathrm {d}t \nonumber \\&\quad \quad +\,\frac{\varGamma _{\mathrm {im}}}{\varGamma _{\mathrm {re}}^{2}+\varGamma _{\mathrm {im}}^{2}}\int _{0}^{T}f\left( t\right) \left( \frac{\mathrm {d}}{\mathrm {d}t}\int _{0}^{t}g\left( \tau \right) \frac{\sin \left( \log \left( t-\tau \right) ^{\beta }\right) }{ \left( t-\tau \right) ^{\alpha }}\mathrm {d}\tau \right) \mathrm {d}t \end{aligned}$$
(49)

and

$$\begin{aligned}&\int _{0}^{T}g\left( t\right) \,{}_{t}{\mathcal {D}}_{T}^{\gamma }f\left( t\right) \mathrm {d}t\nonumber \\&\quad =-\frac{\varGamma _{\mathrm {re}}}{\varGamma _{\mathrm {re}}^{2}+\varGamma _{\mathrm {im}}^{2}}\int _{0}^{T}g\left( t\right) \left( \frac{\mathrm {d}}{\mathrm {d}t} \int _{t}^{T}f\left( \tau \right) \frac{\cos \left( \log \left( \tau -t\right) ^{\beta }\right) }{\left( \tau -t\right) ^{\alpha }}\mathrm {d}\tau \right) \mathrm {d}t \nonumber \\&\quad \quad -\,\frac{\varGamma _{\mathrm {im}}}{\varGamma _{\mathrm {re}}^{2}+\varGamma _{\mathrm {im}}^{2}}\int _{0}^{T}g\left( t\right) \left( \frac{\mathrm {d}}{\mathrm {d}t}\int _{t}^{T}f\left( \tau \right) \frac{\sin \left( \log \left( \tau -t\right) ^{\beta }\right) }{ \left( \tau -t\right) ^{\alpha }}\mathrm {d}\tau \right) \mathrm {d}t. \end{aligned}$$
(50)

The integral in the first term of (49) is transformed as

$$\begin{aligned}&\int _{0}^{T}f\left( t\right) \left( \frac{\mathrm {d}}{\mathrm {d}t} \int _{0}^{t}g\left( \tau \right) \frac{\cos \left( \log \left( t-\tau \right) ^{\beta }\right) }{\left( t-\tau \right) ^{\alpha }}\mathrm {d}\tau \right) \mathrm {d}t \nonumber \\&\quad =\left[ f(t)\int _{0}^{t}g\left( \tau \right) \frac{\cos \left( \log \left( t-\tau \right) ^{\beta }\right) }{\left( t-\tau \right) ^{\alpha }} \mathrm {d}\tau \right] _{0}^{T}\nonumber \\&\qquad -\int _{0}^{T}f^{\prime }(t)\left( \int _{0}^{t}g\left( \tau \right) \frac{\cos \left( \log \left( t-\tau \right) ^{\beta }\right) }{\left( t-\tau \right) ^{\alpha }}\mathrm {d}\tau \right) \mathrm {d}t \nonumber \\&\quad =f\left( T\right) \int _{0}^{T}g\left( \tau \right) \frac{\cos \left( \log \left( T-\tau \right) ^{\beta }\right) }{\left( T-\tau \right) ^{\alpha }}\mathrm {d}\tau \nonumber \\&\qquad -\int _{0}^{T}g\left( \tau \right) \left( \int _{\tau }^{T}f^{\prime }\left( t\right) \frac{\cos \left( \log \left( t-\tau \right) ^{\beta }\right) }{\left( t-\tau \right) ^{\alpha }}\mathrm {d}t\right) \mathrm {d}\tau \nonumber \\&\quad =\int _{0}^{T}g\left( \tau \right) \left( f\left( T\right) \frac{\cos \left( \log \left( T-\tau \right) ^{\beta }\right) }{\left( T-\tau \right) ^{\alpha }}-\int _{\tau }^{T}f^{\prime }\left( t\right) \frac{\cos \left( \log \left( t-\tau \right) ^{\beta }\right) }{\left( t-\tau \right) ^{\alpha }}\mathrm {d}t\right) \mathrm {d}\tau . \end{aligned}$$
(51)

Similarly, transforming the integral in the second term of (49) we obtain

$$\begin{aligned}&\int _{0}^{T}f\left( t\right) \left( \frac{\mathrm {d}}{\mathrm {d}t} \int _{0}^{t}g\left( \tau \right) \frac{\sin \left( \log \left( t-\tau \right) ^{\beta }\right) }{\left( t-\tau \right) ^{\alpha }}\mathrm {d}\tau \right) \mathrm {d}t \nonumber \\&\quad =\int _{0}^{T}g\left( \tau \right) \left( f\left( T\right) \frac{\sin \left( \log \left( T-\tau \right) ^{\beta }\right) }{\left( T-\tau \right) ^{\alpha }}-\int _{\tau }^{T}f^{\prime }\left( t\right) \frac{\sin \left( \log \left( t-\tau \right) ^{\beta }\right) }{\left( t-\tau \right) ^{\alpha }}\mathrm {d}t\right) \mathrm {d}\tau . \end{aligned}$$
(52)

The integral in the first term of (50) yields

$$\begin{aligned}&\frac{\mathrm {d}}{\mathrm {d}t}\int _{t}^{T}f\left( \tau \right) \frac{\cos \left( \log \left( \tau -t\right) ^{\beta }\right) }{\left( \tau -t\right) ^{\alpha }}\mathrm {d}\tau \nonumber \\&\quad =\frac{\mathrm {d}}{\mathrm {d}t}\int _{0}^{T-t}f\left( u+t\right) \frac{\cos u^{\beta }}{u^{\alpha }}\mathrm {d}u \nonumber \\&\quad =-f\left( T\right) \frac{\cos \left( T-t\right) ^{\beta }}{\left( T-t\right) ^{\alpha }}+\int _{0}^{T-t}f^{\prime }\left( u+t\right) \frac{\cos \left( \log u^{\beta }\right) }{u^{\alpha }}\mathrm {d}u \nonumber \\&\quad =-f\left( T\right) \frac{\cos \left( T-t\right) ^{\beta }}{\left( T-t\right) ^{\alpha }}+\int _{t}^{T}f^{\prime }\left( \tau \right) \frac{\cos \left( \log \left( \tau -t\right) ^{\beta }\right) }{\left( \tau -t\right) ^{\alpha }}\mathrm {d}\tau , \end{aligned}$$
(53)

while, similarly, the integral in the second term of (50) gives

$$\begin{aligned} \frac{\mathrm {d}}{\mathrm {d}t}\int _{t}^{T}f\left( \tau \right) \frac{\sin \left( \log \left( \tau -t\right) ^{\beta }\right) }{\left( \tau -t\right) ^{\alpha }}\mathrm {d}\tau= & {} -f\left( T\right) \frac{\sin \left( T-t\right) ^{\beta }}{\left( T-t\right) ^{\alpha }}\nonumber \\&\quad +\int _{t}^{T}f^{\prime }\left( \tau \right) \frac{\sin \left( \log \left( \tau -t\right) ^{\beta }\right) }{\left( \tau -t\right) ^{\alpha }}\mathrm {d}\tau . \end{aligned}$$
(54)

By plugging (51) and (52) into (49), as well as by plugging (53) and (54) into (50), we obtain integration by parts formula (4).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atanacković, T.M., Janev, M., Pilipović, S. et al. Euler–Lagrange Equations for Lagrangians Containing Complex-order Fractional Derivatives. J Optim Theory Appl 174, 256–275 (2017). https://doi.org/10.1007/s10957-016-0873-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-016-0873-6

Keywords

Mathematics Subject Classification

Navigation