Skip to main content
Log in

The Use of Squared Slack Variables in Nonlinear Second-Order Cone Programming

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In traditional nonlinear programming, the technique of converting a problem with inequality constraints into a problem containing only equality constraints, by the addition of squared slack variables, is well known. Unfortunately, it is considered to be an avoided technique in the optimization community, since the advantages usually do not compensate for the disadvantages, like the increase in the dimension of the problem, the numerical instabilities, and the singularities. However, in the context of nonlinear second-order cone programming, the situation changes, because the reformulated problem with squared slack variables has no longer conic constraints. This fact allows us to solve the problem by using a general-purpose nonlinear programming solver. The objective of this work is to establish the relation between Karush–Kuhn–Tucker points of the original and the reformulated problems by means of the second-order sufficient conditions and regularity conditions. We also present some preliminary numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We refer to this condition as SOSC-NSOCP in order to distinguish it from SOSC for NLP.

  2. Notice that \(g_i(x) = \big ( g_{i0}(x), \overline{g_i(x)} \big ) = \big ( g_{i,1}(x),\ldots ,g_{i,m_i}(x) \big )\), i.e., \(g_{i0}(x) = g_{i,1}(x)\). Similarly, we have \(\lambda _i = (\lambda _{i0},\bar{\lambda }_i) = (\lambda _{i,1},\ldots ,\lambda _{i,m_i})\), i.e., \(\lambda _{i0} = \lambda _{i,1}\).

  3. Note the difference between \(\mathcal {K}^{\ell }\) and \(\mathcal {K}_\ell \). The former denotes the second-order cone in \(\mathbb {R}^{\ell }\), and the latter means the \(\ell \)th second-order cone in the Cartesian product \(\mathcal {K}= \mathcal {K}_1 \times \cdots \times \mathcal {K}_r\).

References

  1. Bertsimas, D., Tsitsiklis, J.N.: Introduction to Linear Optimization, 1st edn. Athena Scientific, Belmont (1997)

    Google Scholar 

  2. Dantzig, G.B.: Linear Programming and Extensions. Princeton University Press, Princeton (1963)

    MATH  Google Scholar 

  3. Murtagh, B.A., Saunders, M.A.: Large-scale linearly constrained optimization. Math. Program. 14, 41–72 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  4. Conn, A.R., Gould, N., Toint, P.L.: A note on exploiting structure when using slack variables. Math. Program. 67, 89–97 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Spedicato, E.: On a Newton-like method for constrained nonlinear minimization via slack variables. J. Optim. Theory Appl. 36(2), 175–190 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  6. Tapia, R.A.: A stable approach to Newton’s method for general mathematical programming problems in \(\mathbb{R}^n\). J. Optim. Theory Appl. 14, 453–476 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  7. Tapia, R.A.: On the role of slack variables in quasi-Newton methods for constrained optimization. In: Dixon, L.C.W., Szegö, G.P. (eds.) Numerical Optimisation of Dynamic Systems, pp. 235–246. North-Holland Publishing Company, Amsterdam (1980)

    Google Scholar 

  8. Bertsekas, D.P.: Nonlinear Programming, 2nd edn. Athena Scientific, Belmont (1999)

    MATH  Google Scholar 

  9. Mangasarian, O.L.: Unconstrained Lagrangians in nonlinear programming. SIAM J. Control 13(4), 772–791 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  10. Robinson, S.M.: Stability theory for systems of inequalities, part II: differentiable nonlinear systems. SIAM J. Numer. Anal. 13(4), 497–513 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  11. Alizadeh, F., Goldfarb, D.: Second-order cone programming. Math. Program. 95(1), 3–51 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lobo, M.S., Vandenberghe, L., Boyd, S., Lebret, H.: Applications of second-order cone programming. Linear Algebra Appl. 284(1–3), 193–228 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  14. Fukuda, E.H., Silva, P.J.S., Fukushima, M.: Differentiable exact penalty functions for nonlinear second-order cone programs. SIAM J. Optim. 22(4), 1607–1633 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kanzow, C., Ferenczi, I., Fukushima, M.: On the local convergence of semismooth Newton methods for linear and nonlinear second-order cone programs without strict complementarity. SIAM J. Optim. 20(1), 297–320 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kato, H., Fukushima, M.: An SQP-type algorithm for nonlinear second-order cone programs. Optim. Lett. 1(2), 129–144 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu, Y.Z., Zhang, L.W.: Convergence of the augmented Lagrangian method for nonlinear optimization problems over second-order cones. J. Optim. Theory Appl. 139(3), 557–575 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Yamashita, H., Yabe, H.: A primal-dual interior point method for nonlinear optimization over second-order cones. Optim. Methods Softw. 24(3), 407–426 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, New York (2000)

    Book  MATH  Google Scholar 

  20. Bonnans, J.F., Ramírez, C.H.: Perturbation analysis of second-order cone programming problems. Math. Program. 104, 205–227 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nocedal, J., Wright, S.J.: Numerical Optimization, 1st edn. Springer, New York (1999)

    Book  MATH  Google Scholar 

  22. Fourer, R., Gay, D.M., Kernighan, B.W.: A modeling language for mathematical programming. Manag. Sci. 36, 519–554 (1990)

    Article  MATH  Google Scholar 

  23. Andreani, R., Birgin, E.G., Martínez, J.M., Schuverdt, M.: On augmented Lagrangian methods with general lower-level constraints. SIAM J. Optim. 18(4), 1286–1309 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Andreani, R., Birgin, E.G., Martínez, J.M., Schuverdt, M.: Augmented Lagrangian methods under the constant positive linear dependence constraint qualification. Math. Program. 111(1–2), 5–32 (2008)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by Grant-in-Aid for Young Scientists (B) (26730012) and for Scientific Research (C) (26330029) from Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen H. Fukuda.

Additional information

Communicated by Florian Potra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukuda, E.H., Fukushima, M. The Use of Squared Slack Variables in Nonlinear Second-Order Cone Programming. J Optim Theory Appl 170, 394–418 (2016). https://doi.org/10.1007/s10957-016-0904-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-016-0904-3

Keywords

Mathematics Subject Classification

Navigation