Skip to main content
Log in

Abstract

This paper introduces a family of computational methods for solving optimal control problems that calculate optimal trajectories using Galerkin numerical techniques. An important result in the theoretical foundation of these methods is that their associated feasibility and consistency theorems are proved for problems with continuous and/or piecewise continuous controls. In this paper we demonstrate that Galerkin numerical techniques allow for the formulation of optimal control problems in a number of ways that allow for efficiency and/or improved accuracy. The family of Galerkin methods presented can solve a wide range of optimal control problems with a variety of state and control constraints. Numerical formulations using Lagrangian and Legendre test functions are derived. Finally, numerical examples demonstrate the versatile nature of various Galerkin optimal control formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Betts, J.T.: Practical methods for optimal control and estimation using nonlinear programming, 2nd ed. SIAM, Philadelphia (2010)

  2. Bedrossian, N., Karpenko, S., Bhatt, S.: Overclock my satellite. IEEE Spectr. 49(11), 54–62 (2012)

    Article  Google Scholar 

  3. Elnagar, G.N., Kazemi, M.A., Razzaghi, M.: The pseudospectral Legendre method for discretizing optimal control problems. IEEE Trans. Autom. Control 40(10), 1793–1796 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Fahroo, F., Ross, I.M.: Costate estimation by a Legendre pseudospectral method. In: Proceedings of the 1998 AIAA Guidance, Navigation and Control Conference, AIAA 1998-4222. AIAA, Boston (1998)

  5. Gong, Q., Kang, W., Ross, I.M.: A pseudospectral method for the optimal control of constrained feedback linearizable systems. IEEE Trans. Autom. Control 51(7), 1115–1129 (2006)

    Article  MathSciNet  Google Scholar 

  6. Gong, Q., Ross, I.M., Kang, W., Fahroo, F.: Connections between the covector mapping theorem and the convergence of pseudospectral methods for optimal control. Comput. Optim. Appl. 41(3), 307–335 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kang, W., Bedrossian, N.: Pseudospectral optimal control theory makes debut flight, saves NASA SPSSlashDollar1m in under three hours. SIAM News 40(7), 1–3 (2007)

    Google Scholar 

  8. Kang, W., Gong, Q., Ross, I.M.: On the convergence of nonlinear optimal control using pseudospectral methods for feedback linearizable systems. Int. J. Robust Nonlinear Control 17(14), 1251–1277 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kang, W.: Rate of convergence for a Legendre pseudospectral optimal control of feedback linearizable systems. J. Control Theory Appl. 8(4), 391–405 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ruths, J., Li, J.S.: A multidimensional pseudospectral method for optimal control of quantum ensembles. J. Chem. Phys. 134(4), 044128 (2011)

    Article  Google Scholar 

  11. Elnagar, G.N., Razzaghi, M.: A collocation-type method for linear quadratic optimal control problems. Optim. Control Appl. Methods 18(3), 227–235 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Elnagar, G.N., Kazemi, M.A.: Pseudospectral Legendre-based optimal computation of nonlinear constrained variational problems. J. Comput. Appl. Math. 88(2), 363–375 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods, Fundamentals in Single Domains. Springer, Berlin (2006)

    MATH  Google Scholar 

  14. Hulme, B.: One-step piecewise polynomial Galerkin methods for initial value problems. Math. Comput. 26(118), 415–426 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hulme, B.: Discrete Galerkin and related one-step methods for ordinary differential equations. Math. Comput. 26(120), 881–891 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cockburn, B., Karniadakis, G.E., Shu, C.W.: Discontinuous Galerkin methods: theory, computation and applications. Lecture Notes in Computational Science and Engineering, vol. 11, chap. The Development of Discontinuous Galerkin Methods, pp. 3–50. Springer, Berlin (2000)

  17. Boucher, R.: Galerkin optimal control. Phd dissertation, Naval Postgraduate School, Monterey (2015)

  18. Deckelnick, K., Hinze, M.: Error estimates in space and time for tracking-type control of the instationary Stokes system. In: Desch, W., Kappel, F., Kunisch, K. (eds.) Control and Estimation of Distributed Parameter Systems, ISNM International Series of Numerical Mathematics, vol. 143, pp. 87–103. Birkhauser, Basel (2002)

    Google Scholar 

  19. Meidner, D., Vexler, B.: A priori error estimates for space–time finite element discretization of parabolic optimal control problems. Part i: problems without control constraints. SIAM J. Control Optim. 47(3), 1150–1177 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Meidner, D., Vexler, B.: A priori error estimates for space–time finite element discretization of parabolic optimal control problems. Part 2: problems with control constraints. SIAM J. Control Optim. 47(3), 1301–1329 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Meidner, D., Vexler, B.: Adaptive space–time finite element methods for parabolic optimization problems. SIAM J. Control Optim. 46(1), 116–142 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Schmich, M., Vexler, B.: Adaptivity with dynamic meshes for space–time finite element discretizations of parabolic equations. SIAM J. Sci. Comput. 30(1), 369–393 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Cullum, J.: Finite-dimensional approximations of state-constrained continuous optimal control problems. SIAM J. Control 10(4), 649–670 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mordukhovich, B.S.: Approximation Methods in Problems of Optimization and Control. Nauka, Moscow (1988)

    MATH  Google Scholar 

  25. Sansone, G., Diamond, E.H.: Orthogonal Functions, Pure and Applied Mathematics, vol. 9. Interscience Publisher Inc, New York (1959)

    Google Scholar 

  26. Ross, K.A.: Elementary Analysis: The Theory of Calculus. Springer, New York (2003)

    Google Scholar 

  27. Bachman, G., Narici, L.: Functional Analysis. Academic Press, New York (1966)

    MATH  Google Scholar 

  28. Folland, G.B.: Real analysis: modern techniques and their applications, 2nd edn. Wiley, New York (1999)

  29. Boucher, R., Kang, W., Gong, Q.: Discontinuous Galerkin optimal control for constrained nonlinear problems. In: Proceedings of the 2014 International Conference on Control and Automation, WeC3.5. IEEE, Taichung (2014)

Download references

Acknowledgments

This work was supported in part by the Air Force Office of Scientific Research (AFOSR) and the Naval Research Laboratory (NRL). The work and views expressed in this paper are those of the authors and do not reflect the official policy or position of the Department of the Army, the Department of the Navy, the Department of Defense, or the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boucher, R., Kang, W. & Gong, Q. Galerkin Optimal Control. J Optim Theory Appl 169, 825–847 (2016). https://doi.org/10.1007/s10957-016-0918-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-016-0918-x

Keywords

Mathematics Subject Classification

Navigation