Skip to main content
Log in

Improving Variational Iteration Method with Auxiliary Parameter for Nonlinear Time-Fractional Partial Differential Equations

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this research, we present a new approach based on variational iteration method for solving nonlinear time-fractional partial differential equations in large domains. The convergence of the method is shown with the aid of Banach fixed point theorem. The maximum error bound is specified. The optimal value of auxiliary parameter is obtained by use of residual error function. The fractional derivatives are taken in the Caputo sense. Numerical examples that involve the time-fractional Burgers equation, the time-fractional fifth-order Korteweg–de Vries equation and the time-fractional Fornberg–Whitham equation are examined to show the appropriate properties of the method. The results reveal that a new approach is very effective and convenient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier Science, Amsterdam (2006)

    MATH  Google Scholar 

  2. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  3. Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  4. Lakshmikantham, V., Leela, S., Vasundhara Devi, J.: Theory of Fractional Dynamic Systems. Cambridge Scientific Publishers, Cottenham (2009)

    MATH  Google Scholar 

  5. Tarasov, V.E.: Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, Berlin (2011)

    Google Scholar 

  6. Agarwal, R.P., Benchohra, M., Hamani, S.: A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions. Acta Appl. Math. 109, 973–1033 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ergören, H., Sakar, M.G.: Boundary value problems for impulsive fractional differential equations with non-local conditions. In: Anastassiou, G.A., Duman, O. (eds.) Advances in Applied Mathematics and Approximation Theory, vol. 41, pp. 283–297. Springer Proceedings in Mathematics and Statistics, New York (2013)

    Chapter  Google Scholar 

  8. Baleanu, D., Trujillo, J.J.: On exact solutions of a class of fractional Euler–Lagrange equations. Nonlinear Dyn. 52, 331–335 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Sakar, M.G., Erdogan, F., Yıldırım, A.: Variational iteration method for the time-fractional Fornberg–Whitham equation. Comput. Math. Appl. 63, 1382–1388 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Sakar, M.G., Erdogan, F.: The homotopy analysis method for solving the time-fractional Fornberg–Whitham equation and comparison with Adomian’s decomposition method. Appl. Math. Model. 37, 8876–8885 (2013)

    Article  MathSciNet  Google Scholar 

  11. Sakar, M.G., Uludag, F., Erdogan, F.: Numerical solution of time-fractional nonlinear PDEs with proportional delays by homotopy perturbation method. Appl. Math. Model. 40, 6639–6649 (2016)

    Article  MathSciNet  Google Scholar 

  12. Geng, F., Cui, M., Zhang, B.: Method for solving nonlinear initial value problems by combining homotopy perturbation and reproducing kernel Hilbert space methods. Nonlinear Anal. Real World Appl. 11, 637–644 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Huang, J., Tang, Y., Vázquez, L., Yang, J.: Two finite difference schemes for time fractional diffusion-wave equation. Numer. Algorithms 64, 707–720 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jafari, H., Gejji, V.D.: Solving a system of nonlinear fractional differential equations using Adomian decomposition. Appl. Math. Comput. 196, 644–651 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Yu, B., Jiang, X., Xu, H.: A novel compact numerical method for solving the two-dimensional non-linear fractional reaction-subdiffusion equation. Numer. Algorithms 68, 923–950 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhao, J., Xiao, J., Ford, N.J.: Collocation methods for fractional integro-differential equations with weakly singular kernels. Numer. Algorithms 65, 723–743 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. He, J.H.: Variational iteration method for delay differential equations. Commun. Nonlinear Sci. Numer. Simul. 2, 235–236 (1997)

    Article  Google Scholar 

  18. Abassy, T.A., El-Tawil, M.A., El-Zoheiyr, H.: Toward a modified variational iteration method. J. Comput. Appl. Math. 207, 137–147 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Abassy, T.A., El-Tawil, M.A., El-Zoheiyr, H.: Solving nonlinear partial differential equations using the modified variational iteration Pad é technique. J. Comput. Appl. Math. 207, 73–91 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Geng, F., Lin, Y., Cui, M.: A piecewise variational iteration method for Riccati differential equations. Comput. Math. Appl. 58, 2518–2522 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ghorbani, A., Saberi-Nadjafi, J.: An effective modification of He’s variational iteration method. Nonlinear Anal. Real World Appl. 10, 2828–2833 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ghaneai, H., Hosseini, M.M.: Variational iteration method with an auxiliary parameter for solving wave-like and heat-like equations in large domains. Comput. Math. Appl. 69, 363–373 (2015)

    Article  MathSciNet  Google Scholar 

  23. Wu, G.C., Lee, E.W.M.: Fractional variational iteration method and its application. Phys. Lett. A 374, 2506–2509 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Yang, X.J.: Advanced Local Fractional Calculus and its Applications. World Science Publisher, New York (2012)

    Google Scholar 

  25. Yang, X.J., Baleanu, D.: Fractal heat conduction problem solved by local fractional variation iteration method. Therm. Sci. 17, 625–628 (2013)

    Article  Google Scholar 

  26. Wu, G.C., Baleanu, D.: Variational iteration method for the Burgers’ flow with fractional derivatives—new Lagrange multipliers. Appl. Math. Model. 37, 6183–6190 (2013)

    Article  MathSciNet  Google Scholar 

  27. He, J.H., Li, Z.B.: Converting fractional differential equations into partial differential equations. Therm. Sci. 16, 331–334 (2012)

    Article  Google Scholar 

  28. Odibat, Z.M.: A study on the convergence of variational iteration method. Math. Comput. Model. 51, 1181–1192 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sakar, M.G., Ergören, H.: Alternative variational iteration method for solving the time-fractional Fornberg–Whitham equation. Appl. Math. Model. 39, 3972–3979 (2015)

    Article  MathSciNet  Google Scholar 

  30. Guesmia, A., Daili, N.: About the existence and uniqueness of solution to fractional Burgers equation. Acta Universitatis Apulensis 21, 161–170 (2010)

    MathSciNet  MATH  Google Scholar 

  31. Bustamante, E., Jiménez, J., Mejía, J.: Cauchy Problems for fifth-order KDV equations in weighted Sobolev spaces. Electron. J. Differ. Equ. 141, 1–24 (2015)

    MathSciNet  MATH  Google Scholar 

  32. Chen, A., Li, J., Deng, X., Huang, W.: Travelling wave solutions of the Fornberg–Whitham equation. Appl. Math. Comput. 215, 3068–3075 (2009)

    MathSciNet  MATH  Google Scholar 

  33. Inokuti, M., Sekine, H., Mura, T.: General use of the Lagrange multiplier in nonlinear mathematical physics. In: Nemat-Nasser, S. (ed.) Variational Method in the Mechanics of Solids, pp. 156–162. Pergamon Press, New York (1978)

    Google Scholar 

  34. Odibat, Z., Momani, S.: The variational iteration method: an efficient scheme for handling fractional partial differential equations in fluid mechanics. Comput. Math. Appl. 58, 2199–2208 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wazwaz, A.M.: Partial Differential Equations and solitary Waves Theory. Springer, New York (2009)

    Book  MATH  Google Scholar 

  36. Shen, J., Tang, T., Wang, L.L.: Spectral Methods: Algorithms, Analysis and Applications. Springer, New York (2011)

    Book  MATH  Google Scholar 

  37. Kaya, D.: An explicit and numerical solutions of some fifth-order KdV equation by decomposition method. Appl. Math. Comput. 144, 353–363 (2003)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Giyas Sakar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakar, M.G., Saldır, O. Improving Variational Iteration Method with Auxiliary Parameter for Nonlinear Time-Fractional Partial Differential Equations. J Optim Theory Appl 174, 530–549 (2017). https://doi.org/10.1007/s10957-017-1127-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-017-1127-y

Keywords

Mathematics Subject Classification

Navigation