Skip to main content
Log in

A New Formulation of the Fractional Optimal Control Problems Involving Mittag–Leffler Nonsingular Kernel

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

The aim of this paper is to propose a new formulation of the fractional optimal control problems involving Mittag–Leffler nonsingular kernel. By using the Lagrange multiplier within the calculus of variations and by applying the fractional integration by parts, the necessary optimality conditions are derived in terms of a nonlinear two-point fractional boundary value problem. Based on the convolution formula and generalized discrete Grönwall’s inequality, the numerical scheme for solving this problem is developed and its convergence is proved. Numerical simulations and comparative results show that the suggested technique is efficient and provides satisfactory results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and some of their Applications. Academic Press, New York (1999)

    MATH  Google Scholar 

  2. Kilbas, A.A., Srivastava, H.H., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, New York (2006)

    MATH  Google Scholar 

  3. Baleanu, D., Guvenc, Z.B., Machado, J.A.T.: New Trends in Nanotechnology and Fractional Calculus Applications. Springer, Dordrecht (2010)

    Book  MATH  Google Scholar 

  4. Yang, X.J., Baleanu, D., Srivastava, H.M.: Local Fractional Integral Transforms and Their Applications. Academic Press, London (2015)

    MATH  Google Scholar 

  5. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  6. Magin, R.L.: Fractional calculus in bioengineering. Crit. Rev. Biomed. Eng. 32(1), 1–104 (2004)

    Article  Google Scholar 

  7. Srivastava, H.M., Kumar, D., Singh, J.: An efficient analytical technique for fractional model of vibration equation. Appl. Math. Model. 45, 192–204 (2017)

    Article  MathSciNet  Google Scholar 

  8. Benson, D.A., Meerschaert, M.M., Revielle, J.: Fractional calculus in hydrologic modeling: a numerical perspective. Adv. Water Resour. 51, 479–497 (2013)

    Article  Google Scholar 

  9. Abdelkawy, M.A., Zaky, M.A., Bhrawy, A.H., Baleanu, D.: Numerical simulation of time variable fractional order mobile–immobile advection–dispersion model. Rom. Rep. Phys. 67(3), 773–791 (2015)

    Google Scholar 

  10. Zhao, J., Zheng, L., Chen, X., Zhang, X., Liu, F.: Unsteady Marangoni convection heat transfer of fractional Maxwell fluid with Cattaneo heat flux. Appl. Math. Model. 44, 497–507 (2017)

    Article  MathSciNet  Google Scholar 

  11. Moghaddam, B.P., Machado, J.A.T.: A stable three-level explicit spline finite difference scheme for a class of nonlinear time variable order fractional partial differential equations. Comput. Math. Appl. 73(6), 1262–1269 (2017)

    Article  MathSciNet  Google Scholar 

  12. Sin, C.S., Zheng, L., Sin, J.S., Liu, F., Liu, L.: Unsteady flow of viscoelastic fluid with the fractional K-BKZ model between two parallel plates. Appl. Math. Model. 47, 114–127 (2017)

    Article  MathSciNet  Google Scholar 

  13. Razminia, A., Baleanu, D., Majd, V.J.: Conditional optimization problems: fractional order case. J. Optim. Theory App. 156(1), 45–55 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus: Models and Numerical Methods. World Scientific, Berlin (2012)

    Book  MATH  Google Scholar 

  15. Moghaddam, B.P., Machado, J.A.T.: Extended algorithms for approximating variable order fractional derivatives with applications. J. Sci. Comput. 71(3), 1351–1374 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Moghaddam, B.P., Machado, J.A.T., Behforooz, H.: An integro quadratic spline approach for a class of variable-order fractional initial value problems. Chaos Soliton. Fract. (2017). https://doi.org/10.1016/j.chaos.2017.03.065

    MathSciNet  MATH  Google Scholar 

  17. Dabiri, A., Butcher, E.A.: Efficient modified Chebyshev differentiation matrices for fractional differential equations. Commun. Nonlinear Sci. 50, 284–310 (2017)

    Article  MathSciNet  Google Scholar 

  18. Agrawal, O.P.: A general formulation and solution scheme for fractional optimal control problems. Nonlinear Dyn. 38(1), 323–337 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Agrawal, O.P.: A quadratic numerical scheme for fractional optimal control problems. J. Dyn. Syst. Meas. Contr. 130(1), 0110101–01101016 (2008)

    Article  Google Scholar 

  20. Agrawal, O.P., Defterli, O., Baleanu, D.: Fractional optimal control problems with several state and control variables. J. Vib. Control 16(13), 1967–1976 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Baleanu, D., Defteli, O., Agrawal, O.P.: A central difference numerical scheme for fractional optimal control problems. J. Vib. Control 15(4), 583–597 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Guo, T.L.: The necessary conditions of fractional optimal control in the sense of Caputo. J. Optim. Theory App. 156(1), 115–126 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Frederico, G.S.F., Torres, D.F.M.: Fractional conservation laws in optimal control theory. Nonlinear Dyn. 53(3), 215–222 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Almeida, R., Torres, D.F.M.: A discrete method to solve fractional optimal control problems. Nonlinear Dyn. 80(4), 1811–1816 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Biswas, R.K., Sen, S.: Free final time fractional optimal control problems. J. Frankl. I 351(2), 941–951 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lotfi, A.: A combination of variational and penalty methods for solving a class of fractional optimal control problems. J. Optim. Theory Appl. (2017). https://doi.org/10.1007/s10957-017-1106-3

    MathSciNet  MATH  Google Scholar 

  27. Jahanshahi, S., Torres, D.F.M.: A simple accurate method for solving fractional variational and optimal control problems. J. Optim. Theory Appl. (2016). https://doi.org/10.1007/s10957-016-0884-3

    MATH  Google Scholar 

  28. Trujillo, J.J., Ungureanu, V.M.: Optimal control of discrete-time linear fractional-order systems with multiplicative noise. Int. J. Control (2016). https://doi.org/10.1080/00207179.2016.1266520

    Google Scholar 

  29. Ejlali, N., Hosseini, S.M.: A pseudospectral method for fractional optimal control problems. J. Optim. Theory Appl. (2016). https://doi.org/10.1007/s10957-016-0936-8

    MATH  Google Scholar 

  30. Ezz-Eldien, S.S., Doha, E.H., Baleanu, D., Bhrawy, A.H.: A numerical approach based on Legendre orthonormal polynomials for numerical solutions of fractional optimal control problems. J. Vib. Control 23(1), 16–30 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Bhrawy, A.H., Ezz-Eldien, S.S., Doha, E.H., Abdelkawy, M.A., Baleanu, D.: Solving fractional optimal control problems within a Chebyshev–Legendre operational technique. Int. J. Control 90, 1230–1244 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Atangana, A., Baleanu, D.: New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. Thermal Sci. 20(2), 763–769 (2016)

    Article  Google Scholar 

  33. Coronel-Escamilla, A., Aguilar, J.F., Baleanu, D., Escobar-Jimenez, R.F., Olivares-Peregrino, V.H., Abundez-Pliego, A.: Formulation of Euler–Lagrange and Hamilton equations involving fractional operators with regular kernel. Adv. Differ. Equ. 283, 1–17 (2016)

    MathSciNet  Google Scholar 

  34. Gómez-Aguilar, J.F.: Irving-Mullineux oscillator via fractional derivatives with Mittag–Leffler kernel. Chaos Soliton. Fract. 95, 179–186 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Gómez-Aguilar, J.F.: Space–time fractional diffusion equation using a derivative with nonsingular and regular kernel. Phys. A 465, 562–572 (2017)

    Article  MathSciNet  Google Scholar 

  36. Gómez-Aguilar, J.F., Atangana, A., Morales-Delgado, J.F.: Electrical circuits RC, LC, and RL described by Atangana\({-}\)Baleanu fractional derivatives. Int. J. Circ. Theor. Appl. (2017). https://doi.org/10.1002/cta.2348

    Google Scholar 

  37. Abdeljawad, T., Baleanu, D.: Integration by parts and its applications of a new nonlocal fractional derivative with Mittag–Leffler nonsingular kernel. J. Nonlinear Sci. Appl. 10(3), 1098–1107 (2017)

    Article  MathSciNet  Google Scholar 

  38. Kirk, D.E.: Optimal Control Theory: An Introduction. Prentice Hall, New York (1971)

    Google Scholar 

  39. Li, C., Zeng, F.: The finite difference methods for fractional ordinary differential equations. Num. Func. Anal. Opt. 34(2), 149–179 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis. Springer, New York (2002)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere thanks to the referees for their very helpful comments and suggestions, which greatly improved the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin Jajarmi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baleanu, D., Jajarmi, A. & Hajipour, M. A New Formulation of the Fractional Optimal Control Problems Involving Mittag–Leffler Nonsingular Kernel. J Optim Theory Appl 175, 718–737 (2017). https://doi.org/10.1007/s10957-017-1186-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-017-1186-0

Keywords

Mathematics Subject Classification

Navigation