Skip to main content
Log in

Asymptotic Equivalence of Evolution Equations Governed by Cocoercive Operators and Their Forward Discretizations

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

The purpose of this work is to study discrete approximations of evolution equations governed by cocoercive operators by means of Euler iterations, both in a finite and in an infinite time horizon. On the one hand, we give precise estimations for the distance between iterates of independently generated Euler sequences and use them to obtain bounds for the distance between the state, given by the continuous-time trajectory, and the discrete approximation obtained by the Euler iterations. On the other hand, we establish the asymptotic equivalence between the continuous- and discrete-time systems, under a sharp hypothesis on the step sizes, which can be removed for operators deriving from a potential. As a consequence, we are able to construct a family of smooth functions for which the trajectories/sequences generated by basic first-order methods converge weakly but not strongly, extending the counterexample of Baillon. Finally, we include a few guidelines to address the problem in smooth Banach spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. Or m-accretive in the Banach space terminology.

  2. This is a piecewise constant interpolation of the sequence \(\mathcal E_nx\).

  3. A different extension would be to consider \(B:X\rightarrow X^*\), to cover the case \(B=\nabla f\). We shall not explore this path here.

  4. The arguments also hold for q-cocoercive operators in q-uniformly smooth spaces (see, for instance, [39]).

References

  1. Su, W., Boyd, S., Candès, E.J.: A differential equation for modeling Nesterov’s accelerated gradient method: theory and insights. Neural Inf. Process. Syst. 27, 2510–2518 (2014)

    MATH  Google Scholar 

  2. Nesterov, Y.: A method of solving a convex programming problem with convergence rate O(1/k2). Sov. Math. Dokl. 27, 372–376 (1983)

    MATH  Google Scholar 

  3. Polyak, B.T.: Introduction to Optimization. Optimization Software, New York (1987)

    MATH  Google Scholar 

  4. Alvarez, F.: On the minimizing property of a second-order dissipative system in Hilbert spaces. SIAM J. Control Optim. 38(4), 1102–1119 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Yosida, K.: On the differentiability and the representation of one-parameter semi-group of linear operators. J. Math. Soc. Jpn. 1, 15–21 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hille, E.: On the generation of semi-groups and the theory of conjugate functions. Proc. Roy. Physiog. Soc. Lund 21(14), 13 (1952)

    MathSciNet  Google Scholar 

  7. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  8. Kato, T.: Nonlinear semigroups and evolution equations. J. Math. Soc. Jpn. 19, 508–520 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brézis, H., Pazy, A.: Accretive sets and differential equations in Banach spaces. Isr. J. Math. 8, 367–383 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  10. Crandall, M.G., Liggett, T.M.: Generation of semigroups of nonlinear transformations on general Banach spaces. Am. J. Math. 93, 265–298 (1971)

    Article  MATH  Google Scholar 

  11. Kobayashi, Y.: Difference aproximation of Cauchy problems for quasi-dissipative operators and generation of nonlinear semigroups. J. Math Soc. Jpn. 27, 640–665 (1975)

    Article  MATH  Google Scholar 

  12. Passty, G.B.: Preservation of the asymptotic behavior of a nonlinear contraction semigroup by backward differencing. Houst. J. Math. 7, 103–110 (1981)

    MathSciNet  MATH  Google Scholar 

  13. Miyadera, I., Kobayasi, K.: On the asymptotic behavior of almost-orbits of nonlinear contractions in Banach spaces. Nonlinear Anal. 6, 349–365 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  14. Álvarez, F., Peypouquet, J.: Asymptotic equivalence and Kobayashi-type estimates for nonautonomous monotone operators in Banach spaces. Discrete Contin. Dyn. Syst. 25(4), 1109–1128 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Álvarez, F., Peypouquet, J.: Asymptotic almost-equivalence of Lipschitz evolution systems in Banach spaces. Nonlinear Anal. Theory Methods Appl. 73(9), 3018–3033 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Álvarez, F., Peypouquet, J.: A unified approach to the asymptotic almost-equivalence of evolution systems without Lipschitz conditions. Nonlinear Anal. Theory Methods Appl. 74(11), 3440–3444 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Martinet, B.: Regularisation, d’inéquations variationelles par approximations succesives. RAIRO, pp. 154–159 (1970)

  18. Sugimoto, T., Koizumi, M.: On the asymptotic behaviour of a nonlinear contraction semigroup and the resolvente iteration. Proc. Jpn. Acad. Ser. A Math. Sci. 59(6), 238–240 (1983)

    Article  MATH  Google Scholar 

  19. Güler, O.: On the convergence of the proximal point algorithm for convex optimization. SIAM J. Control Optim. 29, 403–419 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kreulich, J.: Asymptotic equivalence of nonlinear evolution equations in Banach spaces. J. Evol. Equ. 14(4–5), 969–1000 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Bianchi, P., Hachem, W.: Dynamical behavior of a stochastic forward–backward algorithm using random monotone operators. J. Optim. Theory Appl. 171(1), 90–120 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Bianchi, P.: Ergodic convergence of a stochastic proximal point algorithm. SIAM J. Optim. 26(4), 2235–2260 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Bruck, R.E.: Asymptotic convergence of nonlinear contraction semigroup in Hilbert spaces. J. Funct. Anal. 8, 15–26 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  24. Baillon, J.B.: Un exemple concernant le comportement asymptotique de la solution du problème \({du/dt}+{\partial }\varphi (u){\ni }0\). J. Funct. Anal 28, 369–376 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  26. Brézis, H., Lions, P.L.: Produits infinis de résolvantes. Isr. J. Math. 29, 329–345 (1978)

    Article  MATH  Google Scholar 

  27. Vigeral, G.: Evolution equations in discrete and continuous time for nonexpansive opreators in Banach spaces. ESAIM Control Optim. Calc. Var. 16, 809–832 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Benaïm, M., Hofbauer, J., Sorin, S.: Stochastic approximations and differential inclusions. SIAM J. Control Optim. 44, 328–348 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Peypouquet, J., Sorin, S.: Evolution equations for maximal monotone operators: asymptotic analysis in continuous and discrete time. J. Convex Anal. 17, 1113–1163 (2010)

    MathSciNet  MATH  Google Scholar 

  30. Bauschke, H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces, CMS Books in Mathematics. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  31. Opial, Z.: Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Am. Math. Soc. 73, 591–597 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  32. Cartan, H.: Cours de calcul différentiel. Hermann, Paris (1967)

    MATH  Google Scholar 

  33. Baillon, J.B., Haddad, G.: Quelques propriétés des opérateurs angle-bornés et \(n\)-cycliquement monotones. Isr. J. Math. 26(2), 137–150 (1977)

    Article  MATH  Google Scholar 

  34. Peypouquet, J.: Convex Optimization in Normed Spaces: Theory, Methods and Examples. Springer, Berlin (2015)

    Book  MATH  Google Scholar 

  35. Brézis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North Holland Publishing Company, Amsterdam (1973)

    MATH  Google Scholar 

  36. Baillon, J.B.: Comportement asymptotique des contractions et semi-groupes de contraction. Thèse, Université Paris 6 (1978)

  37. Attouch, H., Baillon, J.B.: Weak versus strong convergence of a regularized Newton dynamic for maximal monotone operators. Vietnam J. Math. 46(1), 177–195 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  38. Moreau, J.J.: Proprietés des applications “prox”. CRAS 256, 1069–1071 (1963)

    MATH  Google Scholar 

  39. López, G., Martín-Márquez, V., Wang, F., Xu, H.K.: Forward-backward splitting methods for accretive operators in Banach spaces. Abstr. Appl. Anal. 25 (2012) Art. ID 109236. https://doi.org/10.1155/2012/109236

  40. Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces. II. Function Spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], Vol. 97. Springer, Berlin (1979)

  41. Xu, H.K.: Inequalities in Banach spaces with applications. Nonlinear Anal. 16(12), 1127–1138 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Supported by Fondecyt Grant 1181179 and Basal Project CMM Universidad de Chile. Andrés Contreras was also supported by CONICYT-PCHA/Doctorado Nacional/2016-21160994.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Peypouquet.

Additional information

Communicated by Michel Théra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Contreras, A., Peypouquet, J. Asymptotic Equivalence of Evolution Equations Governed by Cocoercive Operators and Their Forward Discretizations. J Optim Theory Appl 182, 30–48 (2019). https://doi.org/10.1007/s10957-018-1332-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-018-1332-3

Keywords

Mathematics Subject Classification

Navigation