Skip to main content
Log in

A Characterization of Nash Equilibrium for the Games with Random Payoffs

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We consider a two-player random bimatrix game where each player is interested in the payoffs which can be obtained with certain confidence. The payoff function of each player is defined using a chance constraint. We consider the case where the entries of the random payoff matrix of each player jointly follow a multivariate elliptically symmetric distribution. We show an equivalence between the Nash equilibrium problem and the global maximization of a certain mathematical program. The case where the entries of the payoff matrices are independent normal/Cauchy random variables is also considered. The case of independent normally distributed random payoffs can be viewed as a special case of a multivariate elliptically symmetric distributed random payoffs. As for Cauchy distribution, we show that the Nash equilibrium problem is equivalent to the global maximization of a certain quadratic program. Our theoretical results are illustrated by considering randomly generated instances of the game.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. von Neumann, J.: On the theory of games. Math. Ann. 100, 295–320 (1928)

    Article  MathSciNet  Google Scholar 

  2. Nash, J.F.: Equilibrium points in n-person games. Proc. Nat. Acad. Sci. 36, 48–49 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  3. Mangasarian, O.L., Stone, H.: Two-person nonzero-sum games and quadratic programming. J. Math. Anal. Appl. 9, 348–355 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  4. Collins, W.D., Hu, C.: Studying interval valued matrix games with fuzzy logic. Soft. Comput. 12, 147–155 (2008)

    Article  MATH  Google Scholar 

  5. Li, D.-F., Nan, J.X., Zhang, M.J.: Interval programming models for matrix games with interval payoffs. Optim. Methods Softw. 27, 1–16 (2012)

  6. Gao, J.: Uncertain bimatrix game with applications. Fuzzy Optim. Decis. Mak. 12, 65–78 (2013)

    Article  MathSciNet  Google Scholar 

  7. Li, D.F.: Linear programming approach to solve interval-valued matrix games. J. Omega 39, 655–666 (2011)

    Article  Google Scholar 

  8. Couchman, P., Kouvaritakis, B., Cannon, M., Prashad, F.: Gaming strategy for electric power with random demand. IEEE Trans. Power Syst. 20, 1283–1292 (2005)

    Article  Google Scholar 

  9. Mazadi, M., Rosehart, W.D., Zareipour, H., Malik, O.P., Oloomi, M.: Impact of wind integration on electricity markets: a chance-constrained Nash-Cournot model. Int. Trans. Electr. Energy Syst. 23, 83–96 (2013)

    Article  Google Scholar 

  10. Valenzuela, J., Mazumdar, M.: Cournot prices considering generator availability and demand uncertainty. IEEE Trans. Power Syst. 22, 116–125 (2007)

    Article  Google Scholar 

  11. Wolf, D.D., Smeers, Y.: A stochastic version of a Stackelberg-Nash-Cournot equilibrium model. Manag. Sci. 43, 190–197 (1997)

    Article  MATH  Google Scholar 

  12. Dentcheva, D., Ruszczyński, A.: Optimization with stochastic dominance constraints. SIAM J. Optim. 14, 548–566 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. DeMiguel, V., Xu, H.: A stochastic multiple leader Stackelberg model: analysis, computation, and application. Oper. Res. 57, 1220–1235 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jadamba, B., Raciti, F.: Variational inequality approach to stochastic Nash equilibrium problems with an application to Cournot oligopoly. J. Optim. Theory Appl. 165, 1050–1070 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ravat, U., Shanbhag, U.V.: On the characterization of solution sets of smooth and nonsmooth convex stochastic Nash games. SIAM J. Optim. 21, 1168–1199 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Xu, H., Zhang, D.: Stochastic Nash equilibrium problems: sample average approximation and applications. Comput. Optim. Appl. 55, 597–645 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Faraci, F., Jadamba, B., Raciti, F.: On stochastic variational inequalities with mean value constraints. J. Optim. Theory Appl. 171, 675–693 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Charnes, A., Cooper, W.W.: Deterministic equivalents for optimizing and satisficing under chance constraints. Oper. Res. 11, 18–39 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  19. Prékopa, A.: Stochastic Programming. Springer, Netherlands (1995)

    Book  MATH  Google Scholar 

  20. Singh, V.V., Jouini, O., Lisser, A.: Existence of Nash equilibrium for chance-constrained games. Oper. Res. Lett. 44, 640–644 (2016)

    Article  MathSciNet  Google Scholar 

  21. Singh, V.V., Jouini, O., Lisser, A.: Distributionally robust chance-constrained games: existence and characterization of Nash equilibrium. Optim. Lett. 11, 1385–1405 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Cheng, J., Leung, J., Lisser, A.: Random-payoff two-person zero-sum game with joint chance constraints. Eur. J. Oper. Res. 252, 213–219 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Blau, R.A.: Random-payoff two person zero-sum games. Oper. Res. 22, 1243–1251 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  24. Cassidy, R.G., Field, C.A., Kirby, M.J.L.: Solution of a satisficing model for random payoff games. Manag. Sci. 19, 266–271 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  25. Charnes, A., Kirby, M.J.L., Raike, W.M.: Zero-zero chance-constrained games. Theory Probab. Appl. 13, 628–646 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  26. Song, T.: Systems and Management Science by Extremal Methods, chap. On random payoff matrix games, pp. 291–308. Springer, Berlin (1992)

  27. Fang, K.T., Kotz, S., Ng, K.W.: Symmetric Multivariate and Related Distributions. Chapman and Hall, London (1990)

    Book  MATH  Google Scholar 

  28. R.T, Rockafellar: Convex Analysis. Princeton University Press, Princeton (1970)

    Google Scholar 

  29. Bazaraa, M., Sherali, H., Shetty, C.: Nonlinear Programming: Theory and Algorithms, 3rd edn. Wiley, USA (2006)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas Vikram Singh.

Appendix: Proof of Theorem 3.2

Appendix: Proof of Theorem 3.2

Proof

Fix \(\alpha \in [0.5,1[^2\). To show that \((x^*,y^*)\) defined by (16) is a Nash equilibrium, it is sufficient to show that there exists a vector \((\lambda _1^*, \lambda _2^*,v_1^*,v_2^*)\) which together with \((x^*,y^*)\) is a feasible point of [MP] with objective function value zero (see Theorem 3.1). By using i.i.d. property, we have \(\varSigma _1^{1/2}=\sigma I_{mn\times mn}\), \(\varSigma _2^{1/2}=\bar{\sigma }I_{mn\times mn}\). Take,

$$\begin{aligned} \left. \begin{aligned} \lambda _1^*&=-\mu -\frac{\sigma ~ F_{Z_1^S}^{-1}(1-\alpha _1)}{\sqrt{mn}},\\ \lambda _2^*&=-\bar{\mu }-\frac{\bar{\sigma } ~ F_{Z_2^S}^{-1}(1-\alpha _2)}{\sqrt{mn}},\\ v_1^*&=\frac{1}{\sqrt{mn}}{} \mathbf 1 _{mn},\\ v_2^*&=\frac{1}{\sqrt{mn}}{} \mathbf 1 _{mn}, \end{aligned} \right\} \end{aligned}$$

where \(\mathbf 1 _k\) denotes a \(k\times 1\) vector of ones. It is easy to check that \(\zeta ^*=(\lambda _1^*, \lambda _2^*,v_1^*,v_2^*,x^*,y^*)\) is a feasible point of [MP] and \(\psi (\zeta ^*)=0\). Hence, \((x^*,y^*)\) defined by (16) is a Nash equilibrium of a CCG. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, V.V., Lisser, A. A Characterization of Nash Equilibrium for the Games with Random Payoffs. J Optim Theory Appl 178, 998–1013 (2018). https://doi.org/10.1007/s10957-018-1343-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-018-1343-0

Keywords

Mathematics Subject Classification

Navigation