Skip to main content
Log in

A Strong Convergence Theorem for a Parallel Iterative Method for Solving the Split Common Null Point Problem in Hilbert Spaces

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

There are many iterative methods for solving the split common null point problems involving step sizes that depend on the norm of a bounded linear operator T. We know that the implementation of such algorithms is usually difficult to handle, because we have to compute the norm of the operator T. So, we propose new iterative methods involving a step size selected in such a way that its implementation does not require the computation or estimation of the norm of the operator T. In this paper, a new parallel iterative method for solving the split common null point problem is introduced in Hilbert spaces, without prior knowledge of operator norms. Moreover, some applications of our main results to the multiple-set split feasibility problem and the split minimum point problem are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Byrne, C.: Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Probl. 18(2), 441–453 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Byrne, C.: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Probl. 18, 103–120 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Censor, Y., Elfving, T.: A multi projection algorithm using Bregman projections in a product space. Numer. Algorithms 8(2–4), 221–239 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Censor, Y., Elfving, T., Kopf, N., Bortfeld, T.: The multiple-sets split feasibility problem and its application. Inverse Probl. 21, 2071–2084 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Censor, Y., Segal, A.: The split common fixed point problem for directed operators. J. Convex Anal. 16, 587–600 (2009)

    MathSciNet  MATH  Google Scholar 

  6. Censor, Y., Gibali, A., Reich, R.: Algorithms for the split variational inequality problems. Numer. Algorithms 59, 301–323 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Masad, E., Reich, S.: A note on the multiple-set split convex feasibility problem in Hilbert space. J. Nonlinear Convex Anal. 8, 367–371 (2007)

    MathSciNet  MATH  Google Scholar 

  8. Moudafi, A.: The split common fixed point problem for demicontractive mappings. Inverse Probl. 26, 055007 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Schopfer, F., Schuster, T., Louis, A.K.: An iterative regularization method for the solution of the split feasibility problem in Banach spaces. Inverse Probl. 24, 055008 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Shehu, Y., Iyiola, O.S., Enyi, C.D.: An iterative algorithm for solving split feasibility problems and fixed point problems in Banach spaces. Numer. Algorithms 72, 835–864 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Takahashi, W.: The split feasibility problem in Banach spaces. J. Nonlinear Convex Anal. 15, 1349–1355 (2014)

    MathSciNet  MATH  Google Scholar 

  12. Takahashi, W.: The split feasibility problem and the shrinking projection method in Banach spaces. J. Nonlinear Convex Anal. 16, 1449–1459 (2015)

    MathSciNet  MATH  Google Scholar 

  13. Xu, H.-K.: A variable Krasnosel’skii–Mann algorithm and the multiple-set split feasibility problem. Inverse Probl. 22, 2021–2034 (2006)

    Article  MATH  Google Scholar 

  14. Xu, H.-K.: Iterative methods for the split feasibility problem in infinite dimensional Hilbert spaces. Inverse Probl. 26, 105018 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Yang, Q.: The relaxed CQ algorithm for solving the problem split feasibility problem. Inverse Probl. 20, 1261–1266 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wang, F.: On the convergence of CQ algorithm with variable steps for the split equality problem. Numer. Algorithms 74(3), 927–935 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Byrne, C., Censor, Y., Gibali, A., Reich, S.: Weak and strong convergence of algorithms for the split common null point problem. J. Nonlinear Convex Anal. 13, 759–775 (2012)

    MathSciNet  MATH  Google Scholar 

  18. Chuang, C.S.: Algorithms with new parameter conditions for split variational inclusion problems in Hilbert spaces with application to split feasibility problem. Optimization 65, 859–876 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chuang, C.S.: Strong convergence theorems for the split variational inclusion problem in Hilbert spaces. Fixed Point Theory Appl. 2013, 350 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dadashi, V.: Shrinking projection algorithms for the split common null point problem. Bull. Aust. Math. Soc. 99(2), 299–306 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Takahashi, S., Takahashi, W.: The split common null point problem and the shrinking projection method in Banach spaces. Optimization 65(2), 281–287 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Takahashi, W.: The split common null point problem in Banach spaces. Arch. Math. 104, 357–365 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tuyen, T.M.: A strong convergence theorem for the split common null point problem in Banach spaces. Appl. Math. Optim. 79(1), 207–227 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  24. Tuyen, T.M., Ha, N.S., Thuy, N.T.T.: A shrinking projection method for solving the split common null point problem in Banach spaces. Numer. Algorithms https://doi.org/10.1007/s11075-018-0572-5 (2018)

  25. Boikanyo, O.A.: A strongly convergent algorithm for the split common fixed point problem. Appl. Math. Comput. 265, 844–853 (2015)

    MathSciNet  MATH  Google Scholar 

  26. Cui, H., Wang, F.: Iterative methods for the split common fixed point problem in Hilbert spaces. Fixed Point Theory Appl. 2014, 1–8 (2014)

    Article  MathSciNet  Google Scholar 

  27. López, G., Martín-Márquez, V., Wang, F., Xu, H.-K.: Solving the split feasibility problem without prior knowledge of matrix norms. Inverse Probl. 28, 085004 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang, F., Xu, H.-K.: Cyclic algorithms for split feasibility problems in Hilbert spaces. Nonlinear Anal. 74, 4105–4111 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang, F.: A new iterative method for the split common fixed point problem in Hilbert spaces. Optimization 66(3), 407–415 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Marcel Dekker, New York (1984)

    MATH  Google Scholar 

  31. Reich, S.: Extension problems for accretive sets in Banach spaces. J. Funct. Anal. 26, 378–395 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  32. Moudafi, A.: Viscosity approximation methods for fixed-points problems. J. Math. Anal. Appl. 241, 46–55 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  33. Barbu, V., Precupanu, T.: Convexity and Optimization in Banach spaces. Editura Academiei R.S.R, Bucharest (1978)

    MATH  Google Scholar 

  34. Tuyen, T.M.: A hybrid projection method for common zero of monotone operators in Hilbert spaces. Commun. Korean Math. Soc. 32(2), 447–456 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert spaces. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  36. Goebel, K., Kirk, W.A.: Topics in Metric Fixed Point Theory, Cambridge Studies in Advanced Mathematics, vol. 28. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  37. Maingé, P.E.: Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization. Set Valued Anal. 16, 899–912 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. Xu, H.-K.: Strong convergence of an iterative method for nonexpansive and accretive operators. J. Math. Anal. Appl. 314, 631–643 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  39. Rockafellar, R.T.: On the maximal monotonicity of subdifferential mappings. Pac. J. Math. 33(1), 209–216 (1970)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author was supported by the Science and Technology Fund of Vietnam Ministry of Education and Training (B2019). The third author was supported by the Science and Technology Fund of Thai Nguyen University of Technology (TNUT). The authors would like to thank the referees and the editor for their valuable comments and suggestions which improve the presentation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Truong Minh Tuyen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuyen, T.M., Thuy, N.T.T. & Trang, N.M. A Strong Convergence Theorem for a Parallel Iterative Method for Solving the Split Common Null Point Problem in Hilbert Spaces. J Optim Theory Appl 183, 271–291 (2019). https://doi.org/10.1007/s10957-019-01523-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-019-01523-w

Keywords

Mathematics Subject Classification

Navigation