Skip to main content
Log in

Gradient Formulae for Nonlinear Probabilistic Constraints with Non-convex Quadratic Forms

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

Probability functions appearing in chance constraints are an ingredient of many practical applications. Understanding differentiability, and providing explicit formulae for gradients, allow us to build nonlinear programming methods for solving these optimization problems from practice. Unfortunately, differentiability of probability functions cannot be taken for granted. In this paper, motivated by gas network applications, we investigate differentiability of probability functions acting on non-convex quadratic forms. We establish continuous differentiability for the broad class of elliptical random vectors under mild conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Heitsch, H.: On probability capacity maximization in a stationary gas network. Optimization, pp. 1–31 (2019). https://doi.org/10.1080/02331934.2019.1625353

  2. González Gradón, T., Heitsch, H., Henrion, R.: A joint model of probabilistic/robust constraints for gas transport management in stationary networks. CMS 14, 443–460 (2017). https://doi.org/10.1007/s10287-017-0284-7

    Article  MathSciNet  MATH  Google Scholar 

  3. van Ackooij, W., Finardi, E.C., Matiussi Ramalho, G.: An exact solution method for the hydrothermal unit commitment under wind power uncertainty with joint probability constraints. IEEE Trans. Power Syst. 33(6), 6487–6500 (2018). https://doi.org/10.1109/TPWRS.2018.2848594

    Article  Google Scholar 

  4. van Ackooij, W., Henrion, R., Möller, A., Zorgati, R.: Joint chance constrained programming for hydro reservoir management. Optim. Eng. 15, 509–531 (2014). https://doi.org/10.1007/s11081-013-9236-4

    Article  MathSciNet  MATH  Google Scholar 

  5. van Ackooij, W., Danti Lopez, I., Frangioni, A., Lacalandra, F., Tahanan, M.: Large-scale unit commitment under uncertainty: an updated literature survey. Ann. Oper. Res. 271(1), 11–85 (2018). https://doi.org/10.1007/s10479-018-3003-z

    Article  MathSciNet  MATH  Google Scholar 

  6. Prékopa, A.: Stochastic Programming. Kluwer, Dordrecht (1995). https://doi.org/10.1007/978-94-017-3087-7

  7. Dentcheva, D.: Optimisation models with probabilistic constraints. In: Shapiro, A., Dentcheva, D., Ruszczyński, A. (eds.) Lectures on Stochastic Programming. Modeling and Theory, MPS-SIAM series on optimization, vol. 9, pp. 87–154. SIAM and MPS, Philadelphia (2009)

  8. Garnier, J., Omrane, A., Rouchdy, Y.: Asymptotic formulas for the derivatives of probability functions and their Monte Carlo estimations. Eur. J. Oper. Res. 198, 848–858 (2009). https://doi.org/10.1016/j.ejor.2008.09.026

    Article  MathSciNet  MATH  Google Scholar 

  9. Kibzun, A., Uryas’ev, S.: Differentiability of probability function. Stoch. Anal. Appl. 16, 1101–1128 (1998). https://doi.org/10.1080/07362999808809581

    Article  MathSciNet  MATH  Google Scholar 

  10. Marti, K.: Differentiation of probability functions: the transformation method. Comput. Math. Appl. 30, 361–382 (1995). https://doi.org/10.1016/0898-1221(95)00113-1

    Article  MathSciNet  MATH  Google Scholar 

  11. Pflug, G., Weisshaupt, H.: Probability gradient estimation by set-valued calculus and applications in network design. SIAM J. Optim. 15, 898–914 (2005). https://doi.org/10.1137/S1052623403431639

    Article  MathSciNet  MATH  Google Scholar 

  12. Raik, E.: The differentiability in the parameter of the probability function and optimization of the probability function via the stochastic pseudogradient method (Russian). Izvestiya Akad. Nayk Est. SSR, Phis. Math. 24(1), 3–6 (1975)

  13. Royset, J., Polak, E.: Implementable algorithm for stochastic optimization using sample average approximations. J. Optim. Theory Appl. 122(1), 157–184 (2004). https://doi.org/10.1023/B:JOTA.0000041734.06199.71

    Article  MathSciNet  MATH  Google Scholar 

  14. Royset, J., Polak, E.: Extensions of stochastic optimization results to problems with system failure probability functions. J. Optim. Theory Appl. 133(1), 1–18 (2007). https://doi.org/10.1007/s10957-007-9178-0

    Article  MathSciNet  MATH  Google Scholar 

  15. Uryas’ev, S.: Derivatives of probability functions and integrals over sets given by inequalities. J. Comput. Appl. Math. 56(1–2), 197–223 (1994). https://doi.org/10.1016/0377-0427(94)90388-3

    Article  MathSciNet  MATH  Google Scholar 

  16. Uryas’ev, S.: Derivatives of probability functions and some applications. Ann. Oper. Res. 56, 287–311 (1995). https://doi.org/10.1007/BF02031712

    Article  MathSciNet  Google Scholar 

  17. Fang, K., Kotz, S., Ng, K.W.: Symmetric multivariate and related distributions, Monographs on Statistics and Applied Probability, vol. 36, 1st edn. Springer-Science (1990)

  18. Landsman, Z.M., Valdez, E.A.: Tail conditional expectations for elliptical distributions. North Am. Actuar. J. 7(4), 55–71 (2013). https://doi.org/10.1080/10920277.2003.10596118

    Article  MathSciNet  MATH  Google Scholar 

  19. van Ackooij, W., Aleksovska, I., Zuniga, M.M.: (sub-)differentiability of probability functions with elliptical distributions. Set Valued Variat. Anal. 26(4), 887–910 (2018). https://doi.org/10.1007/s11228-017-0454-3

    Article  MathSciNet  MATH  Google Scholar 

  20. van Ackooij, W., Henrion, R.: Gradient formulae for nonlinear probabilistic constraints with Gaussian and Gaussian-like distributions. SIAM J. Optim. 24(4), 1864–1889 (2014). https://doi.org/10.1137/130922689

    Article  MathSciNet  MATH  Google Scholar 

  21. Farshbaf-Shaker, M.H., Henrion, R., Hömberg, D.: Properties of chance constraints in infinite dimensions with an application to pde constrained optimization. Set Valued Variat. Anal. 26(4), 821–841 (2018). https://doi.org/10.1007/s11228-017-0452-5

    Article  MathSciNet  MATH  Google Scholar 

  22. Rockafellar, R., Wets, R.J.B.: Variational Analysis. Grundlehren der mathematischen Wissenschaften, vol. 317, 3rd edn. Springer, Berlin (2009). https://doi.org/10.1007/978-3-642-02431-3

  23. Hantoute, A., Henrion, R., Pérez-Aros, P.: Subdifferential characterization of continuous probability functions under Gaussian distribution. Math. Program. 174(1–2), 167–194 (2019). https://doi.org/10.1007/s10107-018-1237-9

    Article  MathSciNet  MATH  Google Scholar 

  24. van Ackooij, W., Minoux, M.: A characterization of the subdifferential of singular Gaussian distribution functions. Set Valued Variat. Anal. 23(3), 465–483 (2015). https://doi.org/10.1007/s11228-015-0317-8

    Article  MathSciNet  MATH  Google Scholar 

  25. Henrion, R., Römisch, W.: Lipschitz and differentiability properties of quasi-concave and singular normal distribution functions. Ann. Oper. Res. 177, 115–125 (2010). https://doi.org/10.1007/s10479-009-0598-0

    Article  MathSciNet  MATH  Google Scholar 

  26. van Ackooij, W., Malick, J.: Second-order differentiability of probability functions. Optim. Lett. 11(1), 179–194 (2017). https://doi.org/10.1007/s11590-016-1015-7

    Article  MathSciNet  MATH  Google Scholar 

  27. van Ackooij, W., Henrion, R.: (Sub-) Gradient formulae for probability functions of random inequality systems under Gaussian distribution. SIAM J. Uncertain. Quantif. 5(1), 63–87 (2017). https://doi.org/10.1137/16M1061308

    Article  MathSciNet  MATH  Google Scholar 

  28. Gotzes, C., Heitsch, H., Henrion, R., Schultz, R.: On the quantification of nomination feasibility in stationary gas networks with random loads. Math. Methods Oper. Res. 84, 427–457 (2016). https://doi.org/10.1007/s00186-016-0564-y

    Article  MathSciNet  MATH  Google Scholar 

  29. Cohn, D.L.: Measure theory, second edn. Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks]. Birkhäuser/Springer, New York (2013). https://doi.org/10.1007/978-1-4614-6956-8

  30. Henrion, D., Lasserre, J.B., Savorgnan, C.: Approximate volume and integration for basic semialgebraic sets. SIAM Rev. 51(4), 722–743 (2009). https://doi.org/10.1137/080730287

    Article  MathSciNet  MATH  Google Scholar 

  31. Henrion, D., Lasserre, J.B., Loefberg, J.: Gloptipoly 3: moments, optimization and semidefinite programming. Optim. Methods Softw. 24(4–5), 761–779 (2009). https://doi.org/10.1080/10556780802699201

    Article  MathSciNet  MATH  Google Scholar 

  32. Lasserre, J.B.: Moments, Positive Polynomials and Their Applications, Imperial College Press Optimization, vol. 1, 1st edn. 2 Imperial College Press (2009). https://doi.org/10.1142/p665

  33. Naor, A., Romik, D.: Projecting the surface measure of the sphere of \(\ell _p^n\). Ann. I.H. Poincaré 39(2), 241–261 (2003). https://doi.org/10.1016/S0246-0203(02)00008-0

  34. Bogachev, V.I.: Measure theory, Vol I, Vol II. Springer, Berlin (2007). https://doi.org/10.1007/978-3-540-34514-5

  35. Rudin, W.: Real Anc Complex Analysis. Higher Mathematics Series, 3rd edn. McGraw-Hill, New York (1987)

    Google Scholar 

  36. Elstrodt, J.: Mab und Integrationstheorie, 7th edn. Springer (2011). https://doi.org/10.1007/978-3-642-17905-1

  37. Agarwal, R.P., Perera, K., Pinelas, S.: An Introduction to Complex Analysis. Springer, New York (2011). https://doi.org/10.1007/978-1-4614-0195-7

Download references

Acknowledgements

Both authors would like to acknowledge the contributions of René Henrion, through long deep discussions over many years, to this work. The authors would also like to acknowledge the anonymous reviewer for his extremely detailed lecture and valuable suggestions. Finally, the second author acknowledges partial support by CONICYT grants: Fondecyt Regular 1190110 and CONICYT grant: MATH-AmSud 20-MATH-08.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wim van Ackooij.

Additional information

Communicated by René Henrion.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Ackooij, W., Pérez-Aros, P. Gradient Formulae for Nonlinear Probabilistic Constraints with Non-convex Quadratic Forms. J Optim Theory Appl 185, 239–269 (2020). https://doi.org/10.1007/s10957-020-01634-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-020-01634-9

Keywords

Mathematics Subject Classification

Navigation