Skip to main content
Log in

Superlinear Convergence of the Sequential Quadratic Method in Constrained Optimization

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This paper pursues a twofold goal. Firstly, we aim at deriving novel second-order characterizations of important robust stability properties of perturbed Karush–Kuhn–Tucker systems for a broad class of constrained optimization problems generated by parabolically regular sets. Secondly, the obtained characterizations are applied to establish well-posedness and superlinear convergence of the basic sequential quadratic programming method to solve parabolically regular constrained optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (1998)

    Book  Google Scholar 

  2. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, New York (2000)

    Book  Google Scholar 

  3. Mohammadi, A., Mordukhovich, B.S., Sarabi, M.E.: Parabolic regularity in geometric variational analysis. (2019). arxiv.org/abs/1909.00241

  4. Mohammadi, A., Mordukhovich, B.S., Sarabi, M.E.: Variational analysis of composite models with applications to continuous optimization. to appear in Math. Oper. Res. (2019). arXiv:1905.08837v2

  5. Mordukhovich, B.S., Sarabi, M.E.: Criticality of Lagrange multipliers in variational systems. SIAM J. Optim. 29, 1524–1557 (2019)

    Article  MathSciNet  Google Scholar 

  6. Bonnans, J.F.: Local analysis of Newton-type methods for variational inequalities and nonlinear programming. Appl. Math. Optim. 29, 161–186 (1994)

    Article  MathSciNet  Google Scholar 

  7. Ding, C., Sun, D., Zhang, L.: Characterization of the robust isolated calmness for a class of conic programming problems. SIAM J. Optim. 27, 67–90 (2017)

    Article  MathSciNet  Google Scholar 

  8. Mordukhovich, B.S.: Variational Analysis and Applications. Springer, Cham, Switzerland (2018)

    Book  Google Scholar 

  9. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, I: Basic Theory, II: Applications. Springer, Berlin (2006)

    Google Scholar 

  10. Mordukhovich, B.S.: Complete characterization of openness, metric regularity, and Lipschitzian properties of multifunctions. Trans. Am 340, 1–35 (1993)

    Article  MathSciNet  Google Scholar 

  11. Dontchev, A.L., Rockafellar, R.T.: Implicit Functions and Solution Mappings: A View from Variational Analysis, 2nd edn. Springer, New York (2014)

    MATH  Google Scholar 

  12. Cibulka, R., Dontchev, A.L., Kruger, A.: Strong metric subregularity of mappings in variational analysis and optimization. J. Math. Anal. Appl. 457, 1247–1282 (2018)

    Article  MathSciNet  Google Scholar 

  13. Cui, Y., Sun, D., Toh, K.-C.: On the R-superlinear convergence of the KKT residues generated by the augmented Lagrangian method for convex composite conic programming. Math. Program. 178, 381–415 (2019)

    Article  MathSciNet  Google Scholar 

  14. Dontchev, A.L., Rockafellar, R.T.: Characterizations of Lipschitzian stability in nonlinear programming. In: Fiacco, V. (ed.) Mathematical Programming With Data Perturbations (A, pp. 65–82. Marcel Dekker, New York (1997)

    MATH  Google Scholar 

  15. Gfrerer, H.: First-order and second-order characterizations of metric subregularity and calmness of constraint set mappings. SIAM J. Optim. 21, 1439–1474 (2011)

    Article  MathSciNet  Google Scholar 

  16. Hang, N.T.V., Mordukhovich, B.S., Sarabi, M.E.: Second-order variational analysis in second-order cone programming. Math. Program. 180, 75–116 (2020)

    Article  MathSciNet  Google Scholar 

  17. Henrion, R., Outrata, J.V.: Calmness of constraint systems with applications. Math. Program. 104, 437–464 (2005)

    Article  MathSciNet  Google Scholar 

  18. Izmailov, A.F., Solodov, M.V.: Newton-Type Methods for Optimization and Variational Problems. Springer, New York (2014)

    Book  Google Scholar 

  19. Klatte, D., Kummer, B.: Nonsmooth Equations in Optimization: Regularity, Calculus, Methods, and Applications. Kluwer, Boston, MA (2002)

    MATH  Google Scholar 

  20. Robinson, S.M.: Some continuity properties of polyhedral multifunctions. Math. Program. Stud. 14, 206–214 (1981)

    Article  MathSciNet  Google Scholar 

  21. Ye, J.J., Ye, X.Y.: Necessary optimality conditions for optimization problems with variational inequality constraints. Math. Oper. Res. 22, 977–997 (1997)

    Article  MathSciNet  Google Scholar 

  22. Zheng, X.Y., Ng, K.F.: Metric subregularity and calmness for nonconvex generalized equations in Banach spaces. SIAM J. Optim. 20, 2119–2136 (2010)

    Article  MathSciNet  Google Scholar 

  23. Mordukhovich, B.S., Sarabi, M.E.: Critical multipliers in variational systems via second-order generalized differentiation. Math. Program. 169, 605–648 (2018)

    Article  MathSciNet  Google Scholar 

  24. Izmailov, A.F.: On the analytical and numerical stability of critical Lagrange multipliers. Comput. Math. Math. Phys. 45, 930–946 (2005)

    MathSciNet  Google Scholar 

  25. Mordukhovich, B.S., Outrata, J.V., Ramírez, H.: Graphical derivatives and stability analysis for parameterized equilibria with conic constraints. Set-Valued Var. Anal. 23, 687–704 (2015)

    Article  MathSciNet  Google Scholar 

  26. Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementary Problems. published in two volumes, Springer, New York (2003)

  27. Bonnans, J.F., Gilbert, J.C., Lemaréchal, C., Sagastizabal, C.: Numerical Optimization: Theoretical and Practical Aspects, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  28. Josephy, N.H.: Newton’s method for generalized equations and the PIES energy model. Ph.D. Dissertation, Department of Industrial Engineering, University of Wisconsin-Madison (1979)

  29. Robinson, S.M.: Strongly regular generalized equations. Math. Oper. Res. 5, 3–62 (1980)

    Article  MathSciNet  Google Scholar 

  30. Robinson, S.M.: Perturbed Kuhn-Tucker points and rates of convergence for a class of nonlinear programming algorithms. Math. Program. 7, 1–16 (1974)

    Article  MathSciNet  Google Scholar 

  31. Kato, H., Fukushima, M.: An SQP-type algorithm for nonlinear second-order cone programs. Optim. Lett. 1, 129–144 (2007)

    Article  MathSciNet  Google Scholar 

  32. Wang, Y., Zhang, L.: Properties of equation reformulation of the Karush-Kuhn-Tucker condition for nonlinear second-order cone optimization problems. Math. Meth. Oper. Res. 70, 195–218 (2009)

    Article  MathSciNet  Google Scholar 

  33. Izmailov, A.F., Solodov, M.V.: Newton-type methods: A broader view. J. Optim. Theory Appl. 164, 577–620 (2015)

    Article  MathSciNet  Google Scholar 

  34. Fusek, P.: Isolated zeros of Lipschitzian metrically regular \({\mathbb{R}}^n\)-functions. Optimization 49, 425–446 (2001)

Download references

Acknowledgements

The authors are grateful to two anonymous referees and the handling editor for carefully reading the paper and for their insightful comments that allowed us to improve the original presentation. Research of the first author was partly supported by the US National Science Foundation under grant DMS-1808978 and by the US Air Force Office of Scientific Research under grant #15RT0462. Research of the second author was partly supported by the US National Science Foundation under grants DMS-1512846 and DMS-1808978, by the US Air Force Office of Scientific Research under grant #15RT0462, and by the Australian Research Council Discovery Project DP-190100555.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris S. Mordukhovich.

Additional information

Communicated by Marcin Studniarski.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, A., Mordukhovich, B.S. & Sarabi, M.E. Superlinear Convergence of the Sequential Quadratic Method in Constrained Optimization. J Optim Theory Appl 186, 731–758 (2020). https://doi.org/10.1007/s10957-020-01720-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-020-01720-y

Keywords

Mathematics Subject Classification

Navigation