Skip to main content
Log in

Sequential Difference-of-Convex Programming

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

Optimization methods for difference-of-convex programs iteratively solve convex subproblems to define iterates. Although convex, depending on the problem’s structure, these subproblems are very often challenging and require specialized solvers. This work investigates a new methodology that defines iterates as approximate critical points of significantly easier difference-of-convex subproblems approximating the original one. Since there is considerable freedom to choose such more accessible subproblems, several algorithms can be designed from the given approach. In some cases, the resulting algorithm boils down to a straightforward process with iterates given in an analytic form. In other situations, decomposable subproblems can be chosen, opening the way for parallel computing even when the original program is not decomposable. Depending on the problem’s assumptions, a possible variant of the given approach is the Josephy–Newton method applied to the system of (necessary) optimality conditions of the original difference-of-convex program. In such a setting, local convergence with superlinear and even quadratic rates can be achieved under certain conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Toland, J.F.: Duality in nonconvex optimization. J. Math. Anal. Appl. 66(2), 399–415 (1978)

    Article  MathSciNet  Google Scholar 

  2. Hiriart-Urruty, J.B.: Generalized differentiability / duality and optimization for problems dealing with differences of convex functions. In: Ponstein, J. (ed.) Convexity and Duality in Optimization: Proceedings of the Symposium on Convexity and Duality in Optimization Held at the University of Groningen, The Netherlands June 22, 1984, pp. 37–70. Springer Berlin Heidelberg (1985)

  3. Bomze, I.M., Lemaréchal, C.: Necessary conditions for local optimality in difference-of-convex programming. J. Convex Anal. 17(2), 673–680 (2010)

    MathSciNet  MATH  Google Scholar 

  4. Bagirov, A.M., Yearwood, J.: A new nonsmooth optimization algorithm for minimum sum-of-squares clustering problems. Eur. J. Oper. Res. 170(2), 578–596 (2006)

    Article  MathSciNet  Google Scholar 

  5. Khalaf, W., Astorino, A., d’Alessandro, P., Gaudioso, M.: A DC optimization-based clustering technique for edge detection. Optim. Lett. 11(3), 627–640 (2017)

    Article  MathSciNet  Google Scholar 

  6. Astorino, A., Miglionico, G.: Optimizing sensor cover energy via DC programming. Optim. Lett. 10(2), 355–368 (2016)

    Article  MathSciNet  Google Scholar 

  7. Le Thi, H.A., Le, H.M., Nguyen, V.V., Pham Dinh, T.: A DC programming approach for feature selection in support vector machines learning. Adv. Data Anal. Classif. 2(3), 259–278 (2008)

    Article  MathSciNet  Google Scholar 

  8. Le Thi, H.A., Le, H.M., Pham Dinh, T., Van Huynh, N.: Binary classification via spherical separator by DC programming and DCA. J. Global Optim. 56(4), 1393–1407 (2013)

    Article  MathSciNet  Google Scholar 

  9. Gaudioso, M., Giallombardo, G., Miglionico, G., Vocaturo, E.: Classification in the multiple instance learning framework via spherical separation. Soft. Comput. 24(7), 5071–5077 (2020)

    Article  Google Scholar 

  10. Astorino, A., Fuduli, A., Giallombardo, G., Miglionico, G.: SVM-based multiple instance classification via DC optimization. Algorithms 12(12), 249 (2019)

    Article  Google Scholar 

  11. Rakotomamonjy, A., Flamary, R., Gasso, G.: DC proximal Newton for nonconvex optimization problems. IEEE Trans. Neural Netw. Learn. Syst. 27(3), 636–647 (2016)

    Article  MathSciNet  Google Scholar 

  12. Li, X., Yang, L., Ge, J., Haupt, J., Zhang, T., Zhao, T.: On quadratic convergence of DC proximal Newton algorithm in nonconvex sparse learning. Adv. Neural Inf. Process. Syst. 1, 2743–2753 (2017)

    Google Scholar 

  13. de Oliveira, W., Tcheou, M.P.: An inertial algorithm for DC programming. Set-Valued Var. Anal. 27(4), 895–919 (2019)

    Article  MathSciNet  Google Scholar 

  14. Tuy, H.: Convex Analysis and Global Optimization, Nonconvex Optimization and Its Applications, vol. 22. Springer, Berlin (2016)

    Book  Google Scholar 

  15. Gaudioso, M., Giallombardo, G., Miglionico, G.: Minimizing piecewise-concave functions over polyhedra. Math. Oper. Res. 43(2), 580–597 (2018)

    Article  MathSciNet  Google Scholar 

  16. An, L.T.H., Tao, P.D.: The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems. Ann. Oper. Res. 133(1), 23–46 (2005)

    Article  MathSciNet  Google Scholar 

  17. Le Thi, H.A., Tao, P.D.: DC programming and DCA: thirty years of developments. Math. Program. 169(1), 5–68 (2018)

    Article  MathSciNet  Google Scholar 

  18. Tao, P.D., Le Thi, H.A.: Convex analysis approach to DC programming: theory, algorithms and applications. Acta Math. Vietnam. 22(1), 289–355 (1997)

    MathSciNet  MATH  Google Scholar 

  19. Joki, K., Bagirov, A.M., Karmitsa, N., Mäkelä, M.M.: A proximal bundle method for nonsmooth DC optimization utilizing nonconvex cutting planes. J. Global Optim. 68(3), 501–535 (2017)

    Article  MathSciNet  Google Scholar 

  20. Joki, K., Bagirov, A.M., Karmitsa, N., Mäkelä, M.M., Taheri, S.: Double bundle method for finding Clarke stationary points in nonsmooth DC programming. SIAM J. Optim. 28(2), 1892–1919 (2018)

    Article  MathSciNet  Google Scholar 

  21. Montonen, O., Joki, K.: Bundle-based descent method for nonsmooth multiobjective DC optimization with inequality constraints. J. Global Optim. 72(3), 403–429 (2018)

    Article  MathSciNet  Google Scholar 

  22. Gaudioso, M., Giallombardo, G., Miglionico, G., Bagirov, A.M.: Minimizing nonsmooth DC functions via successive DC piecewise-affine approximations. J. Global Optim. 71(1), 37–55 (2018)

    Article  MathSciNet  Google Scholar 

  23. de Oliveira, W.: Proximal bundle methods for nonsmooth DC programming. J. Global Optim. 75(2), 523–563 (2019)

    Article  MathSciNet  Google Scholar 

  24. Izmailov, A.F., Solodov, M.V.: Newton-type methods: a broader view. J. Optim. Theory Appl. 164(2), 577–620 (2015)

    Article  MathSciNet  Google Scholar 

  25. van Ackooij, W., de Oliveira, W.: Nonsmooth and nonconvex optimization via approximate difference-of-convex decompositions. J. Optim. Theory Appl. 182(1), 49–80 (2019)

    Article  MathSciNet  Google Scholar 

  26. Pang, J.S., Razaviyayn, M., Alvarado, A.: Computing B-stationary points of nonsmooth DC programs. Math. Oper. Res. 42(1), 95–118 (2017)

    Article  MathSciNet  Google Scholar 

  27. Aragón Artacho, F.J., Campoy, R., Vuong, P.T.: Using positive spanning sets to achieve d-stationarity with the boosted dc algorithm. Vietnam J. Math (2020). https://doi.org/10.1007/s10013-020-00400-8

    Article  MathSciNet  MATH  Google Scholar 

  28. Souza, J.C.O., Oliveira, P.R., Soubeyran, A.: Global convergence of a proximal linearized algorithm for difference of convex functions. Optim. Lett. 10(7), 1529–1539 (2016)

    Article  MathSciNet  Google Scholar 

  29. Clarke, F.: Optimisation and nonsmooth analysis. Classics in applied mathematics. Soc. Ind. Appl. Math. (1990). https://doi.org/10.1137/1.9781611971309

    Article  Google Scholar 

  30. Artacho, F.J.A., Fleming, R.M.T., Vuong, P.T.: Accelerating the DC algorithm for smooth functions. Math. Program. 169(1), 95–118 (2018)

    Article  MathSciNet  Google Scholar 

  31. Hiriart-Urruty, J., Lemaréchal, C.: Convex Analysis and Minimization Algorithms II. No. 306 in Grundlehren der mathematischen Wissenschaften, 2nd edn. Springer, Berlin (1996)

    MATH  Google Scholar 

  32. Izmailov, A.F., Solodov, M.V.: Newton-Type Methods for Optimization and Variational Problems. Springer Series in Operations Research and Financial Engineering, 1st edn. Springer, Berlin (2014)

    Book  Google Scholar 

Download references

Acknowledgements

The author is grateful to four anonymous reviewers for their remarks and constructive suggestions that considerably improved the first version of this article. The author also acknowledges financial support from the Gaspard-Monge program for Optimization and Operations Research (PGMO) project “Models for planning energy investment under uncertainty.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Welington de Oliveira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, W. Sequential Difference-of-Convex Programming. J Optim Theory Appl 186, 936–959 (2020). https://doi.org/10.1007/s10957-020-01721-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-020-01721-x

Keywords

Mathematics Subject Classification

Navigation