Skip to main content
Log in

Permanence and global attractivity for discrete nonautonomous two-species Lotka-Volterra competitive system with delays and feedback controls

  • Published:
Periodica Mathematica Hungarica Aims and scope Submit manuscript

Abstract

A discrete nonautonomous two-species Lotka-Volterra competitive system with delays and feedback controls is proposed and investigated. By using the method of discrete Lyapunov functionals, new sufficient conditions on the permanence of species and global attractivity of the system are established. Particularly, an interesting fact is found in our results, that is, the feedback controls are harmless to the permanence of species for the considered system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Braverman and S. H. Saker, Permanence, oscillation and attractivity of the discrete hematopoiesis model with variable coeffients, Nonlinear Anal., 67 (2007), 2955–2965.

    Article  MathSciNet  MATH  Google Scholar 

  2. D. M. Chan and J. E. Franke, Probabilities of extinction, weak extinction, permanence, and mutual exclusion in discrete, competitive, Lotka-Volterra systems, Comput. Math. Appl., 47 (2004), 365–379.

    Article  MathSciNet  MATH  Google Scholar 

  3. D. M. Chan and J. E. Franke, Probabilities of extinction, weak extinction, permanence, and mutual exclusion in discrete, competitive, Lotka-Volterra systems that involve invading species, Math. Comput. Modelling, 40 (2004), 809–821.

    Article  MathSciNet  MATH  Google Scholar 

  4. F. Chen, Permanence of a single species discrete model with feedback control and delay, Appl. Math. Letters, 20 (2007), 729–733.

    Article  MATH  Google Scholar 

  5. F. Chen, Permanence in a discrete Lotka-Volterra competition model with deviating arguments, Nonlinear Anal. RWA, 9 (2008), 2150–2155.

    Article  MATH  Google Scholar 

  6. F. Chen, Permanence for the discrete mutualism model with time delays, Math. Comput. Modelling, 47 (2008), 431–435.

    Article  MathSciNet  MATH  Google Scholar 

  7. X. Chen and F. Chen, Stable periodic solution of a discrete periodic Lotka-Volterra competition system with a feedback control, Appl. Math. Comput., 181 (2006), 1446–1454.

    Article  MathSciNet  MATH  Google Scholar 

  8. B. Dai, N. Zhang and J. Zou, Permanence for the Michaelis-Menten type discrete three-species ratio-dependent food chain model with delay, J. Math. Anal. Appl., 324 (2006), 728–738.

    Article  MathSciNet  MATH  Google Scholar 

  9. D. Fundinger, T. Lindström and G. Osipenko, On the appearance of multiple attractors in discrete food-chains, Appl. Math. Comput., 184 (2007), 429–444.

    Article  MathSciNet  MATH  Google Scholar 

  10. J. E. Franke and A.-A. Yakubu, Extinction and persistence of species in discrete competitive systems with a safe refuge, J. Math. Anal. Appl., 203 (1996), 746–761.

    Article  MathSciNet  MATH  Google Scholar 

  11. J. E. Franke and A.-A. Yakubu, Principle of competitive exclusion for discrete populations with reproducing juveniles and adults, Nonlinear Anal., 30 (1997), 1197–1205.

    Article  MathSciNet  MATH  Google Scholar 

  12. Y. Fan and W. Li, Permanence for a delayed discrete ratio-dependent predator-prey system with Holling type functional response, J. Math. Anal. Appl., 299 (2004), 357–374.

    Article  MathSciNet  MATH  Google Scholar 

  13. D. V. Giang and D. C. Huong, Extinction, persistence and global stability in models of population growth, J. Math. Anal. Appl., 308 (2005), 195–207.

    Article  MathSciNet  MATH  Google Scholar 

  14. D. V. Giang, Persistence and global attractivity in the model A n+1 = qA n + F n(A n,A n−1, ...,A n−m), Comm. Nonl. Sci. Num. Simul., 14 (2009), 1115–1120.

    Article  MathSciNet  MATH  Google Scholar 

  15. J. Hofbauer, V. Hutson and W. Jansen, Coexistence for systems governed by difference equations of Lotka-Volterra type, J. Math. Biol., 25 (1987), 553–570.

    Article  MathSciNet  MATH  Google Scholar 

  16. R. Kon, Permanence of discrete-time Kolmogorov systems for two species and saturated fixed points, J. Math. Biol., 48 (2004), 57–81.

    Article  MathSciNet  MATH  Google Scholar 

  17. X. Liao, Z. Ouyang and S. Zhou, Permanence of species in nonautonomous discrete Lotka-Volterra competitive system with delays and feedback controls, J. Comput. Appl. Math., 211 (2008), 1–10.

    Article  MathSciNet  MATH  Google Scholar 

  18. X. Liao, S. Zhou and Y. Chen, Permanence and global stability in a discrete nspecies competition system with feedback controls, Nonlinear Anal. RWA, 9 (2008), 1661–1671.

    Article  MathSciNet  MATH  Google Scholar 

  19. Y. Li and L. Zhu, Existence of positive periodic solutions for difference equations with feedback control, Appl. Math. Letters, 18 (2005), 61–67.

    Article  Google Scholar 

  20. Z. Lu and W. Wang, Permanence and global attractivity for Lotka-Volterra difference systems, J. Math. Biol., 39 (1999), 269–282.

    Article  MathSciNet  MATH  Google Scholar 

  21. Y. Muroya, Persistence and global stability in discrete models of pure-delay nonautonomous Lotka-Volterra type, J. Math. Anal. Appl., 293 (2004), 446–461.

    Article  MathSciNet  MATH  Google Scholar 

  22. Y. Muroya, Persistence and global stability for discrete models of nonautonomous Lotka-Volterra type, J. Math. Anal. Appl., 273 (2002), 492–511.

    Article  MathSciNet  MATH  Google Scholar 

  23. Y. Muroya, Persistence and global stability in discrete models of Lotka-Volterra type, J. Math. Anal. Appl., 330 (2007), 24–33.

    Article  MathSciNet  MATH  Google Scholar 

  24. C. Niu and X. Chen, Almost periodic sequence solutions of a discrete Lotka-Volterra competitive system with feedback control, Nonlinear Anal. RWA, doi:10.1016/j.nonrwa.2008.10.027, In press.

  25. D. E. Pelinovsky, P. G. Kevrekidis and D. J. Frantzeskakis, Persistence and stability of discrete vortices in nonlinear Schrodinger lattices, Physics D, 212 (2005), 20–53.

    Article  MathSciNet  MATH  Google Scholar 

  26. S. H. Saker, Qualitative analysis of discrete nonlinear delay survival red blood cells model, Nonlinear Anal. RWA, 9 (2008), 471–489.

    Article  MathSciNet  MATH  Google Scholar 

  27. Y. Saito, W. Ma and T. Hara, A necessary and sufficient condition for permanence of Lotka-Volterra discrete system with delays, J. Math. Anal. Appl., 256 (2001), 162–174.

    Article  MathSciNet  MATH  Google Scholar 

  28. Y. Saito, T. Hara and W. Ma, Harmless delays for permanence and impersistence of a Lotka-Volterra discrete predator-prey system, Nonlinear Anal., 50 (2002), 703–715.

    Article  MathSciNet  MATH  Google Scholar 

  29. L. Wu, F. Chen and Z. Li, Permanence and global attractivity of a discrete Schoener’s competition model with delays, Math. Comput. Modelling, 49 (2009), 1607–1617.

    Article  MathSciNet  MATH  Google Scholar 

  30. W. Wang and Z. Lu, Global stability of discrete models of Lotka-Volterra type, Nonlinear Anal., 35 (1999), 1019–1030.

    Article  MathSciNet  MATH  Google Scholar 

  31. A.-A. Yakubu, The effects of planting and harvesting on endangered species in discrete competitive systems, Math. Biosci., 126 (1995), 1–20.

    Article  MathSciNet  MATH  Google Scholar 

  32. X. Yang, Uniform persistence and periodic solutions for a discrete predator-prey system with delays, J. Math. Anal. Appl., 316 (2006), 161–177.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhidong Teng.

Additional information

Communicated by László Hatvani

Supported by The National Natural Science Foundation of P.R. China (60764003), The Major Project of The Ministry of Education of P.R. China (207130) and The Scientific Research Programmes of Colleges in Xinjiang (XJEDU2007G01, XJEDU2006I05).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, J., Teng, Z. & Jiang, H. Permanence and global attractivity for discrete nonautonomous two-species Lotka-Volterra competitive system with delays and feedback controls. Period Math Hung 63, 19–45 (2011). https://doi.org/10.1007/s10998-011-7019-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10998-011-7019-2

Mathematics subject classification numbers

Key words and phrases

Navigation