Skip to main content
Log in

Suboptimal Beam Search Algorithm and Codebook Design for Millimeter-Wave Communications

  • Published:
Mobile Networks and Applications Aims and scope Submit manuscript

Abstract

In order to improve the efficiency of beamforming for millimeter-wave communications, a codebook is designed and a corresponding beam search algorithm is proposed in this paper. The codebook is designed with a feature of hierarchy, and can be organized into a binary tree, which makes the implementation of binary search possible. Meanwhile, based on the designed codebook, a suboptimal binary search like (BSL) algorithm is proposed for beamforming. Theoretical analysis and simulation results show that, compared with the state-of-the-art search schemes, the proposed scheme dramatically decreases the search time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Yang M, Li Y, Jin D, Zeng L, Wu X, Vasilakos A (2014) Software-Defined and virtualized future mobile and wireless networks: A Survey. Mobile Networks and Applications. Springer, US, pp 1–15

    Google Scholar 

  2. Daniels RC, Murdock JN, Rappaport TS, Heath RW (2010) 60 GHz wireless: up close and personal. IEEE Microw Mag 11(7):44–50

    Article  Google Scholar 

  3. Huang KC, Wang Z (2011) Millimeter Wave Communication Systems (Vol. 29). Wiley-IEEE Press

  4. Park M, Cordeiro C, Perahia E, Yang LL (2008) Millimeter-wave multi-Gigabit WLAN: challenges and feasibility. In: IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, 2008. IEEE, pp 1–5

  5. Perahia E, Cordeiro C, Park M, Yang LL (2010) IEEE 802.11 ad: defining the next generation multi-Gbps Wi-Fi. In: IEEE Consumer Communications and Networking Conference (CCNC), 2010. IEEE, pp 1–5

  6. Yong SK, Xia P, Valdes-Garcia A (2011) 60GHz Technology for Gbps WLAN and WPAN: from Theory to Practice. Wiley-IEEE Press

  7. Xiao Z (2013) Suboptimal Spatial Diversity Scheme for 60 GHz Millimeter-Wave WLAN. IEEE Commun Lett 17(9):1790–1793

    Article  Google Scholar 

  8. Khan F, Pi J (2011) Millimeter-wave mobile broadband: unleashing 3–300GHz spectrum In: IEEE Wireless Commun. Netw. Conf, p 2011

  9. Pi Z, Khan F (2011) An introduction to millimeter-wave mobile broadband systems. IEEE Commun Mag 49(6):101–107

    Article  Google Scholar 

  10. Wang JB, Chen M, Wan X, Wei C (2009) Ant-colony-optimization-based scheduling algorithm for uplink CDMA nonreal-time data. IEEE Trans Veh Technol 58(1):231–241

    Article  Google Scholar 

  11. Wang J, Su Q, Chen M, Songv X (2013) A Dynamic Region based Limited Feedback Scheme for Efficient Power Allocation in OFDM Systems. IEEE Commun Lett 17(11):2036– 2039

    Article  Google Scholar 

  12. Dai L, Wang J, Wang Z, Tsiaflakis P, Moonen M (2013) Spectrum- and energy-efficient OFDM based on simultaneous multi-channel reconstruction. IEEE Trans Signal Process 61(23):6047– C6059

    Article  MathSciNet  Google Scholar 

  13. Wu J, Wang G, Zheng Y (2014) Energy Efficiency and Spectral Efficiency Tradeoff in Type-I ARQ Systems. IEEE J Sel Areas Commun 32(2):356–266

    Article  Google Scholar 

  14. Wang G, Wu J, Zheng YR (2014) An accurate frame error rate approximation of coded diversity systems with non-identical diversity branches. In: IEEE International Conference on Communications (ICC), 2014. IEEE, pp 5312–5317

  15. IEEE Computer Society (2009) IEEE Standard for Information technology-Telecommunications and information exchange between systems–Local and metropolitan area networks–Specific requirements-Part 15.3: wireless medium access control (MAC) and physical layer (PHY) specifications for high rate wireless personal area networks (WPANs) Amendment 2: millimeter-wave-based alternative physical layer extension, New York, pp 1–187

  16. IEEE Std 802.11ad (2012) IEEE Standard for Information technology–Telecommunications and information exchange between systems–Local and metropolitan area networks–Specific requirements-Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 3: Enhancements for Very High Throughput in the 60 GHz Band, pp 1–628

  17. Park M, Gopalakrishnan P (2009) Analysis on spatial reuse and interference in 60-GHz wireless networks. IEEE J Sel Areas in Commun 27(8):1443–1452

    Article  Google Scholar 

  18. Xiao Z, Bai L, Choi J (2014) Iterative Joint Beamforming Training with Constant-Amplitude Phased Arrays in Millimeter-Wave Communications. IEEE Commun Lett 18(5):829– 832

    Article  Google Scholar 

  19. Xiao Z, Xia XG, Jin D, Ge N (2013) Multipath grouping for millimeter-wave communications IEEE Global Communications Conference (GLOBECOM) 2013, pp 3378–3383

  20. Wang J, Lan Z, Pyo C, Baykas T, Sum C, Rahman M, Gao J, Funada R, Kojima F, Harada H (2009) Multipath grouping for millimeter-wave communications. IEEE J Sel Areas Commun 27(8):1390–1399

    Article  Google Scholar 

  21. Wang J, Lan Z, Sum C, Pyo C, Gao J, Baykas T, Rahman A, Funada R, Kojima F, Lakkis I (2009) Beamforming codebook design and performance evaluation for 60GHz wideband WPANs. In: Vehicular Technology Conference Fall (VTC 2009-Fall), 2009. IEEE, pp 1–6

  22. Li B, Zhou Z, Zou W, Sun X, Du G (2013) On the Efficient Beam-Forming Training for 60GHz Wireless Personal Area Networks. IEEE Trans Wirel Commun 12(2):504–515

    Article  Google Scholar 

  23. Park M, Pan H (2012) A Spatial Diversity Technique for IEEE 802.11 ad WLAN in 60 GHz Band. IEEE Commun Lett 16(8):1260–1262

    Article  Google Scholar 

  24. Maltsev A, Maslennikov R, Sevastyanov A, Lomayev A, Khoryaev A, Davydov A, Ssorin V (2010) Characteristics of indoor millimeter-wave channel at 60 GHz in application to perspective WLAN system. In: European Conference on Antennas and Propagation (EuCAP), 2013. IEEE

  25. Moraitis N, Constantinou P (2007) Indoor channel capacity evaluation utilizing ULA and URA antennas in the millimeter wave band. In: IEEE Personal, Indoor and Mobile Radio Communications (PIMRC), 2007. IEEE, pp 1–5

  26. Raghavan V, Sayeed AM (2011) Sublinear capacity scaling laws for sparse MIMO channels. IEEE Trans Inf Theory 57(1):345–364

    Article  MathSciNet  Google Scholar 

  27. Sayeed AM, Raghavan V (2007) Maximizing MIMO capacity in sparse multipath with reconfigurable antenna arrays. IEEE J Sel Top Signal Process 1(1):156–166

    Article  Google Scholar 

  28. Tse D, Viswanath P (2005) Fundamentals of wireless communication. Cambridge university press

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenyu Xiao.

Additional information

This work was partially supported by the National Natural Science Foundation of China (NSFC) under grant Nos. 61201189, 91338106, and 61231013, the Fundamental Research Funds for the Central Universities under grant Nos. YWF-14-DZXY-007, WF-14-DZXY-020 and YMF-14-DZXY-027, National Basic Research Program of China under grant No.2011CB707000, and Foundation for Innovative Research Groups of the National Natural Science Foundation of China under grant No. 61221061.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, T., Xiao, Z. Suboptimal Beam Search Algorithm and Codebook Design for Millimeter-Wave Communications. Mobile Netw Appl 20, 86–97 (2015). https://doi.org/10.1007/s11036-015-0568-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11036-015-0568-5

Keywords

Navigation