Skip to main content
Log in

A DOA Estimation Approach for Transmission Performance Guarantee in D2D Communication

  • Published:
Mobile Networks and Applications Aims and scope Submit manuscript

Abstract

In Device-to-Device (D2D) communications of massive Multiple-Input Multiple-Output (MIMO) system, the inter-channel interference (ICI) can severely deteriorate the entire system performance. The beamforming technique can be used to alleviate this situation. Thus the localization of the users’ equipment (UE) should be known as a prior. In wireless communication, due to the effect of multipath, the model of incident signal should be regarded as distributed sources instead of point sources. In this paper, we propose a 2-D DOA estimation algorithm for coherently distributed (CD) sources based on conformal array. First, three rational invariance relationships are constructed based on generalized steering vectors (GSVs). Then the propagator method (PM) is used for estimating three rational invariance matrices. Finally, the 2-D DOA of CD sources can be obtained from the eigenvalues of three rational invariance matrices. Without spectrum peaking searching, and estimation and eigendecomposition of sampling covariance matrix, the proposed algorithm has low computational complexity. For the condition with a large amount of data, the distributed and parallel PM is proposed to deal with this problem. Simulation results verify the effectiveness of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Han G, Jiang J, Zhang C, Duong TQ, Guizani M, Karagiannidis G (2016) A Survey on mobile anchors assisted localization in wireless sensor networks. IEEE Commun Surveys Tuts. doi:10.1109/COMST.2016.2544751

  2. Mach P, Becvar Z, Vanek Z (2015) In-band device-to-device communication in OFDMA cellular networks: a survey and challenges. IEEE Commun Surveys Tuts 17(4):1885–1922

    Article  Google Scholar 

  3. Han G, Liu L, Jiang J, Shu L, Hancke G (2015) Analysis of energy-efficient connected target coverage algorithms for industrial wireless sensor networks. IEEE Trans Ind Informat. doi:10.1109/TII.2015.2513767

  4. Asadi A, Wang Q, Mancuso V (2014) A survey on device-to-device communication in cellular networks. IEEE Commun Surveys Tuts 16(4):1801–1819

    Article  Google Scholar 

  5. Ni Y, Jin S, Xu W, Matthaiou M, Shao S, Zhu H (2015) Beamforming and interference cancellation schemes for D2D communications. In: IEEE international conference on communication workshop (ICCW), pp 608–613

  6. Marzetta TL (2010) Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans Wireless Commun 9(11):3590–3600

    Article  Google Scholar 

  7. Xu W, Liang L, Zhang H, Jin S, Li JCF, Lei M (2012) Performance enhanced transmission in device-to-device communications: beamforming or interference cancellation? In: IEEE Global communications conference (GLOBECOM), pp 4296– 4301

  8. Wan L, Han G, Jiang J, Rodrigues JJPC, Feng N, Zhu T (2015) DOA estimation for coherently distributed sources considering circular and noncircular signals in massive MIMO systems. IEEE Syst J. doi:10.1109/JSYST.2015.2445052

  9. Hu A, Lv T, Gao H, Zhang Z, Yang S (2014) An ESPRIT-based approach for 2D localization of incoherently distributed sources in massive MIMO systems. IEEE J Sel Top Signal Process 8(5):996–1011

    Article  Google Scholar 

  10. Lv T, Tan F, Gao H, Yang S (2016) An ESPRIT-based approach for 2D localization of incoherently distributed sources in massive MIMO systems. Signal Process 121(C):30–45

    Article  Google Scholar 

  11. Han G, Wan L, Shu L, Feng N (2015) Two novel DoA estimation approaches for real time assistant calibration system in future vehicle industrial. IEEE Syst J. doi:10.1109/JSYST.2015.2434822

  12. Wang TD, Gan L, Wei P, Liao HS (2013) DOA estimation of coherently distributed sources based on block-sparse constraint with measurement matrix uncertainty. IEICE Electronics Express 10(6):1–8

    Google Scholar 

  13. Zhou L, Li G, Zheng Z, Yang X (2014) Parameter estimation of coherently distributed sources using sparse representation. In: Proceedings of IEEE China summit & international conference on signal and information processing (ChinaSIP), pp 577–581

  14. Han G, Dong Y, Guo H, Shu L, Wu D (2014) Cross-layer optimized routing in wireless sensor networks with duty-cycle and energy harvesting. Wirel Commun Mob Comput 15(16):1957–1981

    Article  Google Scholar 

  15. Lee J, Song I, Kwon H, Lee SR (2003) Low-complexity estimation of 2D DOA for coherently distributed sources. Signal Process 83(8):1789–1802

    Article  MATH  Google Scholar 

  16. Guo X, Wan Q, Yang W, Lei X (2009) Low-complexity 2D coherently distributed sources decoupled DOAs estimation method. Science in China Series F: Information Sciences 52(5):835–842

    Article  MATH  Google Scholar 

  17. Zheng Z, Li G, Teng Y (2012) 2D DOA estimator for multiple coherently distributed sources using modified propagator. Circuits Syst Signal Process 31(1):255–270

    Article  MathSciNet  MATH  Google Scholar 

  18. Zheng Z, Li G, Teng Y (2012) Simplified estimation of 2D DOA for coherently distributed sources. Wireless Pers Commun 62(4):907–922

    Article  Google Scholar 

  19. Zhang G, Tang B (2008) Decoupled estimation of 2D DOA for coherently distributed sources using 3D matrix pencil method. EURASIP Journal on Advances in Signal Processing Article No 151

  20. Feng N, Yue Y, Zhu C, Wan L, Liu QH (2015) Second-order PML: optimal choice of nth-order PML for truncating FDTD domains. J Comput Phys 285:71–83

    Article  MathSciNet  MATH  Google Scholar 

  21. Popa BI, Allen J, Cummer SA (2009) Conformal array design with transformation electromagnetics. J Comput Phys 94:244102

    Google Scholar 

  22. Liu L, Jiang Y, Wan L, Tian Z (2013) Beamforming of joint polarization-space matched filtering for conformal array. The Scientific World Journal Article ID 589675, 10

  23. Zou Y, Xie H, Wan L, Han G (2015) High accuracy frequency and 2d-DOAs estimation of conformal array based on PARAFAC. Journal of Internet Technology 16(1):107–119

    Google Scholar 

  24. Li R, Xu L, Shi XW, Chen L, Cui CY (2012) Two-dimensional NC-music DOA estimation algorithm with a conformal cylindrical antenna array. J Electromagn Waves Appl 25(5-6):805–818

    Article  Google Scholar 

  25. Zou Y, Xie H, Wan L, Han G, Li W (2015) 2D-DOA and mutual coupling estimation in vehicle communication system via conformal array. Mobile Information Systems Article ID 841341, 10

  26. Qi ZS, Guo Y, Wang BH (2011) Blind direction-of-arrival estimation algorithm for conformal array antenna with respect to polarisation diversity. IET Microw Antennas Propag 5(4):433–442

    Article  Google Scholar 

  27. Si WJ, Wan LT, Tian ZX (2013) Fast DOA estimation based on cylindrical conformal array antenna. Syst Eng Electron 35(8):1589–1595

    Google Scholar 

  28. Howland PE, Griffiths HD, Baker CJ (2008) Passive bistatic radar systems Bistatic radar: emerging technology. Wiley, New York

    Google Scholar 

Download references

Acknowledgments

The work is supported by “Qing Lan Project” and “the National Natural Science Foundation of China under Grant No.61572172 and No.61602152” and supported by “the Fundamental Research Funds for the Central Universities, No.2016B10714 and No.2016B03114” and supported by “Science & Technology Pillar Program (Social development) of Changzhou Science and Technology Bureau, No.CE20165023”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangjie Han.

Appendices

Appendix: The derivation of Eq. 18

Assume that the coordinate of each element is (x k , y k , z k ), k = 1, 2, ⋯, m. The unit vectors of X-axis, Y-axis and Z-axis are given by \({\overrightarrow {\mathbf {e}}_{x}},{\overrightarrow {\mathbf {e}}_{y}}\) and \({\overrightarrow {\mathbf {e}}_{z}}\), respectively. The position vector p k of kth element is expressed as

$$ {\mathbf{p}_{k}} = {x_{k}}{\overrightarrow {\mathbf{e}}_{x}} + {y_{k}}{\overrightarrow {\mathbf{e}}_{y}} + {z_{k}}{\overrightarrow {\mathbf{e}}_{z}}, $$
(58)

For sub-array 1 and sub-array 2, the elements are arranged on the same generatrix, the X-axis and Y-axis coordinates of the elements in the same generatrix have the relationship x 11 = ⋯ = x 1(m + 1) = x 1 and y 11 = ⋯ = y 1(m + 1) = y 1, respectively. The patterns of the elements in the same generatrix are identical as well, i.e., h 11 = ⋯ = h 1(m + 1). The kth element of the steering vector b 1(μ i ) of sub-array 1 can be expressed as

$$\begin{array}{@{}rcl@{}} {\left[ {{\mathbf{b}_{1}}\left( {{\boldsymbol{\mu}_{i}}} \right)} \right]_{k}}= \int {\int {{a_{1k}}\left( {\theta ,\varphi } \right)\rho \left( {\theta ,\varphi ;{\boldsymbol{\mu}_{i}}} \right)d\theta d\varphi } } \\ = {H_{1}}\int {\int {\exp \left[ { - jl\left( {k - 1} \right)\cos \theta } \right]\rho \left( {\theta ,\varphi ;{\boldsymbol{\mu}_{i}}} \right)d\theta d\varphi } } , \end{array} $$
(59)

where the kth element of the steering vector of sub-array 1 is a 1k (𝜃,φ) = H 1 exp[−j l(k−1) cos𝜃] with

$$ {H_{1}} = {h_{1}}\exp\left( { - j2\pi \frac{{{x_{1}}\sin \theta \cos \varphi + {y_{1}}\sin \theta \sin \varphi }}{\lambda }} \right). $$
(60)

The azimuth and elevation DOAs can be expressed as

$$ \theta { = }{\theta_{i}} + \tilde \theta, $$
(61)
$$ \varphi { = }{\varphi_{i}} + \tilde \varphi, $$
(62)

where 𝜃 i and φ i are nominal elevation and azimuth of ith CD source, and they are the means of 𝜃 and φ, respectively; \(\tilde \theta \) and \(\tilde \varphi \) are the corresponding random angular deviations. With the first order Taylor series approximation to a 1k (𝜃,φ) around (𝜃,φ)=(𝜃 i , φ i ), we can obtain

$$\begin{array}{@{}rcl@{}} && {a_{1k}}\left( {\theta ,\varphi } \right)= {H_{1}}\exp \left[ { - jl\left( {k - 1} \right)\cos \theta } \right]\\ &&={H_{1}}\exp \left[ { - jl\left( {k - 1} \right)\cos \left( {{\theta_{i}} + \tilde \theta } \right)} \right] \\ && = {H_{1}}\exp \left[ { - jl\left( {k - 1} \right)\left[ {\cos {\theta_{i}}\cos \tilde \theta - \sin {\theta_{i}}\sin \tilde \theta } \right]} \right] \\ && \approx {H_{1}}\exp \left[ { - jl\left( {k - 1} \right)\left( {\cos {\theta_{i}} - \tilde \theta \sin {\theta_{i}}} \right)} \right], \end{array} $$
(63)

where \(\cos \tilde \theta \approx 1\) and \(\sin \tilde \theta \approx \tilde \theta \) are used in the first inequality for a small angular extension. Then Eq. 59 can be written as

$$\begin{array}{@{}rcl@{}} {\left[ {{\mathbf{b}_{1}}\left( {{\boldsymbol{\mu}_{i}}} \right)} \right]_{k}} &=& \int {\int {{a_{1k}}\left( {\theta ,\varphi } \right)\rho \left( {\theta ,\varphi ;{\boldsymbol{\mu}_{i}}} \right)d\theta d\varphi } } \\ & \approx& {H_{1}}\exp \left[ { - jl\left( {k - 1} \right)\cos {\theta_{i}}} \right]{\left[ {h\left( {{\boldsymbol{\mu}_{i}}} \right)} \right]_{k}}, \end{array} $$
(64)

where

$$\begin{array}{@{}rcl@{}} {\left[ {h\left( {{\boldsymbol{\mu}_{i}}} \right)} \right]_{k}} & = &\int \int \exp \left[ {jl\left( {k - 1} \right)\tilde \theta \sin \theta } \right]\\ && \times {\rho_{i}}\left( {{\theta_{i}} + \tilde \theta ,{\varphi_{i}} + \tilde \varphi ;{\boldsymbol{\mu}_{i}}} \right)d\tilde \theta d\tilde \varphi , \end{array} $$
(65)

The kth element of the steering vector b 2(μ i ) of sub-array 2 can be expressed as

$$\begin{array}{@{}rcl@{}} {\left[ {{\mathbf{b}_{2}}\left( {{\boldsymbol{\mu}_{i}}} \right)} \right]_{k}} &= &\int \int {a_{2k}}\left( {\theta ,\varphi } \right)\exp \left( { - jlcos\theta } \right)\\ &&\times {\rho_{i}}\left( {{\theta_{i}} + \tilde \theta ,{\varphi_{i}} + \tilde \varphi ;{\mu_{i}}} \right)d\tilde \theta d\tilde \varphi \\ &\approx & {H_{1}}\exp \left[ { - jl\left( {k - 1} \right)\cos {\theta_{i}}} \right]\\ && \int {\int {\exp \left[ {jl\left( {k - 1} \right)\tilde \theta \sin {\theta_{i}}} \right]} } \\ && \times \exp \left( { - jlcos{\theta_{i}}} \right)\exp \left( {jl\tilde \theta \sin {\theta_{i}}} \right)\\ && \times {\rho_{i}}\left( {{\theta_{i}} + \tilde \theta ,{\varphi_{i}} + \tilde \varphi ;{\boldsymbol{\mu}_{i}}} \right)d\tilde \theta d\tilde \varphi. \end{array} $$
(66)

For a small angular extension and d 1/λ = 1/4, it follows that \(\exp \left ({jl\tilde \theta \sin {\theta _{i}}} \right ) \approx 1\). Then b 2(μ i ) can be expressed as

$$\begin{array}{@{}rcl@{}} {\left[ {{\mathbf{b}_{2}}\left( {{\boldsymbol{\mu}_{i}}} \right)} \right]_{k}} &\approx & {H_{1}}\exp \left[ { - jl\left( {k - 1} \right)\cos {\theta_{i}}} \right]\\ && \times \exp \left( { - jlcos{\theta_{i}}} \right){\left[ {h\left( {{\boldsymbol{\mu}_{i}}} \right)} \right]_{k}}. \end{array} $$
(67)

Based on Eqs. 64 and 67, an approximate rotational invariance relationship between b 1(μ i ) and b 2(μ i ) can be given by

$$ {\mathbf{b}_{2}}\left( {{\boldsymbol{\mu}_{i}}} \right) \approx \exp \left( { - jlcos{\theta_{i}}} \right){\mathbf{b}_{1}}\left( {{\boldsymbol{\mu}_{i}}} \right). $$
(68)

The derivation of Eqs. 24 and 25

For sub-array 3, the X-axis and Y-axis coordinates of the elements in the same generatrix have the relationship x 3(m + 3) = x 3(m + 4)⋯ = x 3(2m + 2) = x 3 and y 3(m + 3) = y 3(m + 4)⋯ = y 3(2m + 2) = y 3, respectively. The patterns of the elements in the same generatrix are identical as well, i.e., h 3(m + 3) = h 3(m + 4)⋯ = h 3(2m + 2). The kth element of the steering vector b 3(μ i ) of sub-array 3 can be expressed as

$$\begin{array}{@{}rcl@{}} {\left[ {{b_{3}}\left( {{\boldsymbol{\mu}_{i}}} \right)} \right]_{k}}\! &=& \int {\int {{a_{3k}}\left( {\theta ,\varphi } \right)\rho \left( {\theta ,\varphi ;{\boldsymbol{\mu}_{i}}} \right)d\theta d\varphi } } \\ & =&{H_{3}}\int \int \exp \left[ { - jl\left( {k - 1} \right)\cos \theta } \right] \\ & &\times \exp \left( { - j{\omega_{2}}} \right)\rho \left( {\theta ,\varphi ;{\boldsymbol{\mu}_{i}}} \right)d\theta d\varphi \\ & =&{H_{3}}\int {\int {\exp \left[ { - jl\left( {k - 1} \right)\cos \theta } \right]} } \\ & &\times \exp \left[ { \!\!- jl\!\left( {\frac{1}{2}\sin \theta \cos \varphi \!+ \frac{{\sqrt 3 }}{2}\sin \theta \sin \varphi } \!\right)} \right]\\ & &\times \rho \left( {\theta ,\varphi ;{\boldsymbol{\mu}_{i}}} \right)d\theta d\varphi, \end{array} $$
(69)

where \(\exp \left (- j\omega _{2i} \right ) = \exp [ - jl(\frac {1}{2}\sin \theta \cos \varphi + \frac {\sqrt {3}}{2}\sin \theta \sin \varphi )]\) according to Eqs. 8 and 11; the kth element of the steering vector of sub-array 1 is a 3k (𝜃,φ) = H 3 exp[−j l(k−1) cos𝜃] with

$$ {H_{3}} = {h_{3}}\exp\left( { - j2\pi \frac{{{x_{3}}\sin \theta \cos \varphi + {y_{3}}\sin \theta \sin \varphi }}{\lambda }} \right). $$
(70)

With the first order Taylor series approximation to \(\exp \left ({ - \frac {1}{2}jl\sin \theta \cos \varphi } \right )\) and \(\exp \left ({ - \frac {{\sqrt 3 }}{2}jl\sin \theta \sin \varphi } \right )\), we respectively have

$$\begin{array}{@{}rcl@{}} &&\exp \left( { - \frac{1}{2}jl\sin \theta \cos \varphi } \right) \\ && = \exp \left[ { - \frac{1}{2}jl\sin \left( {{\theta_{i}} + \tilde \theta } \right)\cos \left( {{\varphi_{i}} + \tilde \varphi } \right)} \right] \\ && \approx \exp \left[ { - \frac{1}{2}jl\left( {\sin {\theta_{i}} + \tilde \theta \cos {\theta_{i}}} \right)\left( {\cos {\varphi_{i}} + \tilde \varphi \sin {\varphi_{i}}} \right)} \right] \\ && \approx \exp \left( { - \frac{1}{2}jl\sin {\theta_{i}}\cos {\varphi_{i}}} \right) \\ && \quad\times \exp \left[ { - \frac{1}{2}jl\left( {\tilde \theta \cos {\theta_{i}}\cos {\varphi_{i}} - \tilde \varphi \sin {\varphi_{i}}\sin {\theta_{i}}} \right)} \right] \end{array} $$
(71)

and

$$\begin{array}{@{}rcl@{}} && \exp \left( { - \frac{{\sqrt 3 }}{2}jl\sin \theta \sin \varphi } \right) \\ && = \exp \left[ { - \frac{{\sqrt 3 }}{2}jl\sin \left( {{\theta_{i}} + \tilde \theta } \right)\sin \left( {{\varphi_{i}} + \tilde \varphi } \right)} \right] \\ && \approx \exp \left[ { - \frac{{\sqrt 3 }}{2}jl\left( {\sin {\theta_{i}} + \tilde \theta \cos {\theta_{i}}} \right)\left( {\sin {\varphi_{i}} + \tilde \varphi \cos {\varphi_{i}}} \right)} \right] \\ && \approx \exp \left( { - \frac{{\sqrt 3 }}{2}jl\sin {\theta_{i}}\sin {\varphi_{i}}} \right) \\ &&\quad \times \exp \left[ { - \frac{{\sqrt 3 }}{2}jl\left( {\tilde \theta \cos {\theta_{i}}\sin {\varphi_{i}} + \tilde \varphi \cos {\varphi_{i}}\sin {\theta_{i}}} \right)} \right] \end{array} $$
(72)

For a small angular extension and d 2/λ = 1/4, it follows that \(\exp \left [ { - \frac {1}{2}jl\left ({\tilde \theta \cos {\theta _{i}}\cos {\varphi _{i}} - \tilde \varphi \sin {\varphi _{i}}\sin {\theta _{i}}} \right )} \right ] \approx 1\) and \(\exp \left [ { - \frac {{\sqrt 3 }}{2}jl\left ({\tilde \theta \cos {\theta _{i}}\sin {\varphi _{i}} + \tilde \varphi \cos {\varphi _{i}}\sin {\theta _{i}}} \right )} \right ] \approx 1\). The kth element of the steering vector b 3(μ i ) of sub-array 3 can be expressed as

$$\begin{array}{@{}rcl@{}} && {\left[ {{\mathbf{b}_{3}}\left( {{\boldsymbol{\mu}_{i}}} \right)} \right]_{k}} = \int \int {a_{3k}}\left( {\theta ,\varphi } \right) \rho \left( {\theta ,\varphi ;{\boldsymbol{\mu}_{i}}} \right)d\theta d\varphi \\ && \approx {H_{1}}\exp \left[ { - jl\left( {k - 1} \right)\cos {\theta_{i}}} \right]\\ &&\quad \times \exp \left[ { - jl\left( {\frac{1}{2}\sin {\theta_{i}}\cos {\varphi_{i}} - \frac{{\sqrt 3 }}{2}\sin {\theta_{i}}\sin {\varphi_{i}}} \right)} \right] \\ && \quad\times \int {\int {\exp \left[ {jl\left( {k - 1} \right)\tilde \theta \sin {\theta_{i}}} \right]\rho \left( {\theta ,\varphi ;{\boldsymbol{\mu}_{i}}} \right)d\theta d\varphi } } \\ && \approx {H_{3}}\exp \left[ { - jl\left( {k - 1} \right)\cos {\theta_{i}}} \right]\exp \left( { - j{\omega_{2i}}} \right){\left[ {h\left( {{\boldsymbol{\mu}_{i}}} \right)} \right]_{k}}. \end{array} $$
(73)

Based on Eqs. 59 and 73, an approximate rotational invariance relationship between b 1(μ i ) and b 3(μ i ) can be given by

$$ {\mathbf{b}_{3}}\left( {{\boldsymbol{\mu}_{i}}} \right) \approx \frac{{{H_{3}}}}{{{H_{1}}}}\exp \left( { - j{\omega_{2i}}} \right){\mathbf{b}_{1}}\left( {{\boldsymbol{\mu}_{i}}} \right). $$
(74)

Similar as Eq. 74, an approximate rotational invariance relationship between b 1(μ i ) and b 4(μ i ) can be given by

$$ {\mathbf{b}_{4}}\left( {{\boldsymbol{\mu}_{i}}} \right) \approx \frac{{{H_{4}}}}{{{H_{1}}}}\exp \left( { - j{\omega_{3i}}} \right){\mathbf{b}_{1}}\left( {{\boldsymbol{\mu}_{i}}} \right), $$
(75)

where the form of H 4 is similar with that of H 3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, L., Han, G., Jiang, J. et al. A DOA Estimation Approach for Transmission Performance Guarantee in D2D Communication. Mobile Netw Appl 22, 998–1009 (2017). https://doi.org/10.1007/s11036-017-0820-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11036-017-0820-2

Keywords

Navigation