Skip to main content

Advertisement

Log in

Exploiting Energy Efficient Emotion-Aware Mobile Computing

  • Published:
Mobile Networks and Applications Aims and scope Submit manuscript

Abstract

As people become more aware of the emotion detection and fifth generation (5G) technology, emotion-aware mobile computing has become a hot issue in the affective computing systems. Emotion-aware mobile computing utilizes mobile and computing technology to detect the affective state of a person. It is a new active research area and will bring many attractive applications and services with the development of 5G. Emotion-aware mobile computing has two main veins: analysis and computation. With the support of big data and cloud computing technology, mobile users are able to obtain better performance in terms of resource intensive service. The whole process of emotion-aware mobile computing requires data collection, data transmission, data analysis, data cognition, and emotion-aware action feedback. In order to detect the accurate emotion, massive data are required to be processed in each step. Therefore, the energy consumption is not an ignorable issue in this technology. In this paper, a framework of energy efficient emotion-aware mobile computing system is proposed. It considers the energy saving from both local user part and remote data centers part. In the local user part, the energy efficient data transmission approach is introduced while in the remote data centers part, the renewable energy based geo-distributed data centers are considered. The results from the analysis demonstrate that the proposed framework is useful to provide energy saving while keeping quality of service (QoS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen M, Zhang Y, Li Y, Mao S, Leung VCM (2015) EMC: emotion-aware mobile cloud computing in 5G. IEEE Netw 29(2):32–38

    Article  Google Scholar 

  2. Qiu M, Ming Z, Li J, Gai K, Zong Z (2015) Phase-change memory optimization for green cloud with genetic algorithm. IEEE Trans on Comput 64(12):3528–3540

    Article  MathSciNet  MATH  Google Scholar 

  3. Gai K, Qiu L, Zhao H, Qiu M (2016) Cost-aware multimedia data allocation for heterogeneous memory using genetic algorithm in cloud computing. IEEE Trans on Cloud Comput. doi:10.1109/TCC.2016.2594172

    Google Scholar 

  4. Li Y, Dai W, Qiu M, Ming Z (2016) Privacy protection for preventing data over-collection in smart city. IEEE Trans on Comput 65(5):1339–1350

    Article  MathSciNet  Google Scholar 

  5. Qiu M, Chen Z, Ming Z, Qiu X, Niu J (2016) Energy-aware data allocation with hybrid memory for mobile cloud systems. IEEE System Journal. doi:10.1109/JSYST.2014.2345733

    Google Scholar 

  6. Lin K, Wang W, Wang X, Ji W, Wan J (2015) QoE-driven spectrum assignment for 5G wireless networks using SDR. IEEE Wirel Commun 22(5):48–55

    Article  Google Scholar 

  7. Fasel B, Luettin J (2003) Automatic facial expression analysis: a survey. Pattern Recogn 36(1):259–275

    Article  MATH  Google Scholar 

  8. Pantic M, Rothkrantz LJ (2000) Automatic analysis of facial expressions: the state of the art. IEEE Trans Pattern Analysis and Machine Intelligence 22(12):1424–1445

    Article  Google Scholar 

  9. Wang H, Peng D, Wang W, Sharif H, Chen HH, Khoynezhad A (2010) Resource-aware secure ECG healthcare monitoring through body sensor networks. IEEE Wirel Commun 17(1):12–19

    Article  Google Scholar 

  10. Zhang Z, Wang H, Vasilakos AV, Fang H (2012) ECG-cryptography and authentication in body area networks. IEEE Trans on Information Technology in Biomedicine 16(6):1070–1078

    Article  Google Scholar 

  11. Ge X, Ye J, Yang Y, Li Q (2016) User mobility evaluation for 5G small cell networks based on individual mobility model. IEEE J Sel Areas Commun 34(3):528–541

    Article  Google Scholar 

  12. Zhang L, Zhang Y (2009) An energy efficient cross layer protocol of channel-aware geographic-informed forwarding in wireless sensor networks. IEEE Trans Veh Technol 58(6):3041–3052

    Article  Google Scholar 

  13. Zhong W, Yu R. Xie S, Zhang Y and Tsang D (2016) Software defined networking for flexible and green energy internet. IEEE Commun Mag 54(12):68–75

  14. Chen M, Zhang Y, Li Y, Hassan MM, Alamri A (2015) AIWAC: affective interaction through wearable computing and cloud technology. IEEE Wirel Commun 22(7):20–27

    Article  Google Scholar 

  15. Lee DJ, Park MK and Lee JH (2015) Height adjustable Multilegged giant Yardwalker for variable presence. IEEE International Conference on Advanced Intelligent Mechatronics. 104–109. doi:10.1109/AIM.2015.7222516

  16. Axisa F, Dittmar A and Delhomme G (2003) Smart clothes for the monitoring in real time and conditions of physiological emotional and sensorial reactions of human. IEEE International Conference on Engineering in Medicine and Biology Society. 3744–3747. doi:10.1109/IEMBS.2003.1280974

  17. LiKamWa R, et al. (2013) Moodscope: building a mood sensor from smartphone usage patterns. Proc. AMC MobiSys’13, Taipei, pp 389–402

  18. Tivatansakul S, Ohkura M, Puangpontip S and Achalakul T (2014) Emotional healthcare system: Emotion detection by facial expressions using Japanese database. IEEE International Conference on Computer Science and Electronic Engineering, pp. 41–46, Sept. doi:10.1109/CEEC.2014.6958552

  19. Jang E, Park B-J, Kim S-H, Park M-S and Sohn J-H (2013) Classification of human emotions from physiological signals using machine learning algorithms. International conference on advances computer-human interactions, pp 395–400, nice, France

  20. Zhang Z, Fang H, Wang H (2016) Multiple imputation based clustering validation (MIV) for big longitudinal trial data with missing values in eHealth. J Med Syst 40(6):1–19

    Google Scholar 

  21. Fang H, Rizzo ML, Wang H, Espy KA, Wang Z (2010) A new nonlinear classifier with a penalized signed fuzzy measure using effective genetic algorithm. Pattern Recogn 43(4):1393–1401

    Article  MATH  Google Scholar 

  22. Tang Z, Liu A, Huang C (2016) Social-aware data collection scheme through opportunistic communication in vehicular mobile networks. IEEE Access 4:6480–6502

    Article  Google Scholar 

  23. Zhang Y, Yu R, Yao W, Xie S, Xiao Y, Guizani M (2011) Home M2M networks: architectures, standards, and QoS improvement. IEEE Commun Mag 49(4):44–52

    Article  Google Scholar 

  24. Zhang K, Mao Y, Leng S, Zhao Q, Li L, Peng X, Pan L, Maharjan S, Zhang Y (2016) Energy-efficient offloading for mobile edge computing in 5G heterogeneous networks. IEEE Access 4:5896–5907

    Article  Google Scholar 

  25. Picard RW (1999) Affective computing for human-computer interfaces. In: Pro. HCI. Munich, Germany, pp 829–833

    Google Scholar 

  26. Picard RW (2003) Affective computing: challenges. Int J Human-Computer Stud 59(1):55–64

    Article  Google Scholar 

  27. Grimm M, Kroschel K, Mower E, Narayanan SS (2007) Primitives-based evaluation and estimation of emotions in speech. Speech Comm 49:787–800

    Article  Google Scholar 

  28. Lee CM, Narayanan SS (2005) Toward detecting emotions in spoken dialogs, IEEE Trans. Speech and Audio Processing 13(2):293–303

    Article  Google Scholar 

  29. Schuller B, Lang M and Rigoll G (2006) Recognition of spontaneous emotions by speech within automotive environment. Proc German Ann Conf Acoustics, pp. 57–58

  30. Wu D, Parsons TD, Mower E and Narayanan SS (2010) Speech emotion estimation in 3D space. Proc IEEE Int’l Conf Multimedia and Expo, pp 737–742. doi:10.1109/ICME.2010.5583101

  31. Fairclough SH (2009) Fundamentals of physiological computing. Interact Comput 21:133–145

    Article  Google Scholar 

  32. Busso C, Deng Z, Yildirim S, Bulut M, Lee CM, Kazemzadeh A, Lee S, Neumann U and Narayanan SS (2004) Analysis of emotion recognition using facial expressions, speech and multimodal information, Proc. Int’l Conf. Multimodal Interfaces, pp 205–211. doi:10.1145/1027933.1027968

  33. Metallinou A, Lee S and Narayanan SS (2010) Decision level combination of multiple modalities for recognition and analysis of emotional expression. Proc Int’l Conf Acoustics, Speech, and Signal Processing, pp 2462–2465. doi:10.1109/ICASSP.2010.5494890

  34. Zeng Z, Pantic M, Roisman GI, Huang TS (2009) A survey of affect recognition methods: audio, visual, and spontaneous expressions. IEEE Trans Pattern Analysis and Machine Intelligence 31(1):39–58

    Article  Google Scholar 

  35. Parsons TD, Iyer A, Cosand L, Courtney C, Rizzo AA (2009) Neurocognitive and psychophysiological analysis of human performance within virtual reality environments. Studies Health Technology and Informatics 142:247–252

    Google Scholar 

  36. Gilleade K, Dix A and Allanson J (2005) Affective videogames and modes of affective gaming: assist me, challenge me, emote me. Proc Digital Games Research Assoc Conf, pp 16–20

  37. Liu C, Agrawal P, Sarkar N, Chen S (2009) Dynamic difficulty adjustment in computer games through real-time anxiety-based affective feedback. Int’l J Human-Computer Interaction 25(6):506–529

    Article  Google Scholar 

  38. Magerkurth C, Cheok A, Mandryk R, Nilsen T (2005) Pervasive games: bringing computer entertainment back to the real world. ACM Comput Entertain 3(3):11–29

    Google Scholar 

  39. Sykes J, Brown S (2003) Affective gaming: measuring emotion through the gamepad. Proc Conf Human Factors, pp:732–733. doi:10.1145/765891.765957

  40. Conati C (2002) Probabilistic assessment of users emotions in educational games. Appl Artif Intell 16(7/8):555–575

    Article  Google Scholar 

  41. Craig SD, Graesser AC, Sullins J, Gholson B (2004) Affect and learning: an exploratory look into the role of affect in learning with auto tutor. J Educational Media 29(3):241–250

    Article  Google Scholar 

  42. Picard R, Papert S, Bender W, Blumberg B, Breazeal C, Cavallo D, Machover T, Resnick M, Roy D, Strohecker C (2004) Affective learning a manifesto. BT Technology J 22(4):253–269

    Article  Google Scholar 

  43. Breazeal C (2003) Emotion and sociable humanoid robots. Int’l J Human-Computer Studies 59(1/2):119–155

    Article  Google Scholar 

  44. Fong T, Nourbakhsh I, Dautenhahn K (2003) A survey of socially interactive robots. Robot Auton Syst 42(3/4):143–166

    Article  MATH  Google Scholar 

  45. Rani P, Liu C, Sarkar N, Vanman E (2006) An empirical study of machine learning techniques for affect recognition in human-robot interaction. Pattern Analysis and Application 9(1):58–69

    Article  Google Scholar 

  46. Lin K, Chen M, Deng J, Hassan M, Fortino G (2016) Enhanced fingerprinting and trajectory prediction for IoT localization in smart buildings. IEEE Trans Autom Sci Eng 13(3):1294–1307

    Article  Google Scholar 

  47. Tian D, Zhou J, Wang Y, Zhang G and Xia H (2016) An adaptive vehicular epidemic routing method based on attractor selection model. Ad hoc networks 36(part 2):465-481

  48. Tian D, Zhou J, Wang Y, Lu Y, Xia H, Yi Z (2015) A dynamic and self-adaptive network selection method for multimode communications in heterogeneous vehicular telematics. IEEE Trans Intell Transp Syst 16(6):3033–3049

    Article  Google Scholar 

  49. Peng Y, Kang D-K, Al-Hazemi F and Youn C-H (2016) Energy and QoS aware resource allocation for heterogeneous sustainable cloud datacenters. Optical Switching and Networking, In Press

  50. Armbrust M, Fox A, Griffith R, Joseph AD, Katz RH, Konwinski A, Lee G, Patterson DA, Rabkin A, Stoica I, Zaharia M (2010) A view of cloud computing. Commun ACM 53(4):50–58

    Article  Google Scholar 

  51. Lin K, Song J, Luo J, Ji W, Hossain M, Ghoneim A (2016) GVT: green video transmission in the mobile cloud networks. IEEE Trans Circuits Syst Video Technol. doi:10.1109/TCSVT.2016.2539618

    Google Scholar 

  52. Soman SS, Zareipour H, Malik O and Mandal P (2010) A review of wind power and wind speed forecasting methods with different time horizons. In Proc. IEEE north American power symposium, pp. 1-8

  53. Sharma N, Sharma P, Irwin D and Shenoy D (2010) Predicting solar generation form weather forecasts using machine learning. In Proc IEEE international conference on smart grid communications, pp 528-533

  54. United States Environment Protection Agency (2007) EPA report on server and data center energy efficiency. Rep. to Congress, Final pp 1-130

  55. Paulraj RN, Gore D (2003) Introduction to space-time wireless communications. Cambridge Univ Press, Cambridge: UK

  56. Cui S, Goldsmith AJ, Bahai A (2004) Energy-efficiency of MIMO and cooperative MIMO techniques in sensor networks. IEEE J Sel Areas Commun 22(6):1089–1098

    Article  Google Scholar 

  57. Peng Y, Youn C-H (2015) An energy-efficient cooperative MIMO transmission with data compression in wireless sensor networks. IEEJ Trans Elect Electron Eng 10(6):729–730

    Article  Google Scholar 

  58. Peng Y, Al-Hazemi F, Kim H, Youn C-H (2016) Joint selection for cooperative spectrum sensing in wireless sensor network. IEEE Sensor J 16(10):3486–3487

    Article  Google Scholar 

  59. Rappaport TS, Sun S, Mayzus R, Zhao H, Azar Y, Wang K, Wong GN, Schulz JK, Samimi M, Gutierrez F (2013) Millimeter wave mobile communications for 5G cellular: it will work! IEEE Access 1:335–349

    Article  Google Scholar 

  60. Ge X, Tu S, Mao G, Wang C-X, Han T (2015) 5G Ultra-Dense Cellular Networks. IEEE Wirel Commun 23(1):72–79

    Article  Google Scholar 

  61. Zi R, Ge X, John T, Wang C-X, Wang H, Han T (2016) Energy efficiency optimization of frequency radio chains for 5G wireless communication systems. IEEE J Sel Areas Commun 34(4):758–771

    Article  Google Scholar 

  62. Raghavendra R, Ranganathan P, Talwar V, Wang Z, Zhu X (2008) No power struggles: coordinated multi-level power management for the data center. In ASPLOS XIII: Proc. In: 13th Int. Conf. Archit. Support program. Lang. Oper. Syst., New York, pp, pp 48–59

    Google Scholar 

  63. Katz R (2009) Tech titans building boom. IEEE Spectr 45(2):40–54

    Article  Google Scholar 

  64. Peng Y and Choi J (2014) A new cooperative MIMO scheme based on SM for energy efficiency improvement in wireless sensor network. Sci. World J 2014(975054)

  65. Peng Y, Al-Hazemi F, Kim H, Youn C-H (2017) Design and optimization for energy-efficient cooperative MIMO transmission in ad hoc networks. IEEE Trans Veh Technol 66(1):710–719

Download references

Acknowledgements

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University, Riyadh, Saudi Arabia for its funding of this research through the Profile Research Group project (PRG-1436-17).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Y., Peng, L., Zhou, P. et al. Exploiting Energy Efficient Emotion-Aware Mobile Computing. Mobile Netw Appl 22, 1192–1203 (2017). https://doi.org/10.1007/s11036-017-0865-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11036-017-0865-2

Keywords

Navigation