Skip to main content
Log in

A Novel Fireworks Algorithm for the Protein-Ligand Docking on the AutoDock

  • Published:
Mobile Networks and Applications Aims and scope Submit manuscript

Abstract

The AutoDock is a widely used protein-ligand docking simulation platform which is a simulator to bring the field of computer-aided drug design (CADD) conveniences. The protein-ligand docking problem is of great significance to design more effective and ideal drugs. In order to solve the protein-ligand docking problem more effectively, we propose an improved fireworks algorithm called FWADOCK. FWADOCK utilizes the position updating information of fireworks with the best fitness value to determine the shape of the fireworks and the distribution of sparks. During the process of searching for the optimal solution, it is also considered that the diversity of understanding and how to avoid premature convergence of the algorithm. The proposed algorithm is tested on some benchmark test cases of protein-ligand docking problems and compared with some other related algorithms from different perspectives on the AutoDock platform. The results show that FWADOCK has a competitive performance in solving the protein-ligand docking problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Brooijmans N, Kuntz ID (2003) Molecular recognition and docking algorithms. Annu Rev Biophys Biomol Struct 32(1):335–373

    Article  Google Scholar 

  2. Güner O (2000) Pharmacophore perception, development, and use in drug design. Int Univ Line 5(7):987–989

    Google Scholar 

  3. Huang SY, Zou X (2010) Advances and challenges in protein-ligand docking. Int J Mol Sci 11(8):3016–3034

    Article  Google Scholar 

  4. Jug G, Anderluh M, Tomašič T (2015) Comparative evaluation of several docking tools for docking small molecule ligands to DC-SIGN. J Mol Model 21(6):1–12

    Article  Google Scholar 

  5. Moitessier N, Englebienne P, Lee D, Lawandi J, Corbeil CR (2008) Towards the development of universal, fast and highly accurate docking/scoring methods: a long way to go. Br J Pharmacol 153(SUPPL. 1):7–26

    Article  Google Scholar 

  6. Verlinde CL, Hol WG (1994) Structure-based drug design: progress, results and challenges. Structure 2(7):577–587

    Article  Google Scholar 

  7. Huey R, Morris GM, Olson AJ, Goodsell DS (2007) Software news and update a semiempirical free energy force field with charge-based desolvation. J Comput Chem 10:1145–1152

    Article  Google Scholar 

  8. Feinstein WP, Brylinski M (2015) Calculating an optimal box size for ligand docking and virtual screening against experimental and predicted binding pockets. Aust J Chem 7(1):18

    Google Scholar 

  9. Zeng X, Liao Y, Liu Y, Zou Q (2017) Prediction and validation of disease genes using HeteSim scores. IEEE/ACM Trans Comput Biol Bioinformatics (TCBB) 14(3):687–695

    Article  Google Scholar 

  10. Jones G, Willett P, Glen R, Leach A, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267(3):727–748

    Article  Google Scholar 

  11. Miller MD, Kearsley SK, Underwood DJ, Sheridan RE (1994) FLOG: a system to select ‘quasi-flexible’ ligands complementary to a receptor of known three-dimensional structure. J Comput Aided Mol Des 8:153–174

    Article  Google Scholar 

  12. Rarey M, Kramer B, Lengauer T, Klebe G (1996) Predicting receptor-ligand interactions by an incremental construction algorithm. J Mol Biol 261(3):470–489

    Article  Google Scholar 

  13. Li J, Zheng S, Tan Y (2014) Adaptive fireworks algorithm. IEEE Congr Evol Comput (CEC) 2014:3214–3221

    Google Scholar 

  14. Hu X, Balaz S, Shelver WH (2004) A practical approach to docking of zinc metalloproteinase inhibitors. J Mol Graph Model 22(4):293–307

    Article  Google Scholar 

  15. Morris GM, Goodsell DS, Huey R, Olson AJ (1996) Distributed automated docking of flexible ligands to proteins: parallel applications of AutoDock 2.4. J Comput Aided Mol Des 10:293–304

    Article  Google Scholar 

  16. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. Softw News Updates 30(16):2786–2791

    Google Scholar 

  17. Jiang D, Huo L, Song H (2018) Rethinking behaviors and activities of base stations in mobile cellular networks based on big data analysis. IEEE Trans Netw Sci Eng 1(1):1–12

    MathSciNet  Google Scholar 

  18. Jiang D, Huo L, Lv Z et al (2018) A joint multi-criteria utility-based network selection approach for vehicle-to-infrastructure networking. IEEE Trans Intell Transp Syst 99:1–15

    Google Scholar 

  19. Jiang D, Wang Y, Lv Z et al (2019) Big data analysis-based network behavior insight of cellular networks for industry 4.0 applications. IEEE Trans Ind Inf, online available. https://doi.org/10.1109/TII.2019.2930226

  20. Jiang D, Wang W, Shi L et al (2018) A compressive sensing-based approach to end-to-end network traffic reconstruction. IEEE Trans Netw Sci Eng 5(3):1–12

    Google Scholar 

  21. Jiang D, Huo L, Li Y (2018) Fine-granularity inference and estimations to network traffic for SDN. PLoS One 13(5):1–23

    Google Scholar 

  22. Wang F, Jiang D, Wen H et al (2019) Adaboost-based security level classification of mobile intelligent terminals. J Supercomput 75:1–19 Online available

    Article  Google Scholar 

  23. Huo L, Jiang D, Zhu X, et al (2019) An SDN-based fine-grained measurement and modeling approach to vehicular communication network traffic. Int J Commun Syst online available, pp 1–12

  24. Wang F, Jiang D, Qi S (2019) An adaptive routing algorithm for integrated information networks. China Commun 7(1):196–207

    Google Scholar 

  25. Huo L, Jiang D (2019) Stackelberg game-based energy-efficient resource allocation for 5G cellular networks. Telecommun Syst 23(4):1–11

    Google Scholar 

  26. Huo L, Jiang D, Lv Z (2018) Soft frequency reuse-based optimization algorithm for energy efficiency of multi-cell networks. Comput Electr Eng 66(2):316–331

    Article  Google Scholar 

  27. Zhu J, Song Y, Jiang D et al (2018) A new deep-Q-learning-based transmission scheduling mechanism for the cognitive Internet of things. IEEE Internet Things J 5(4):2375–2385

    Article  Google Scholar 

  28. Tang W, Zhang K, Jiang D (2018) Physarum-inspired routing protocol for energy harvesting wireless sensor networks. Telecommun Syst 67(4):745–762

    Article  Google Scholar 

  29. Zhang B, Zheng Y, Zhang M, Chen S (2017) Fireworks algorithm with enhanced fireworks interaction. IEEE/ACM Trans Comput Biol Bioinformatics (TCBB) 14(1):42–55

    Article  Google Scholar 

  30. Wang GG, Deb SS, Cui Z (2015) Monarch butterfly optimization. Neural Comput Applic 31:1–20 Springer, London

    Google Scholar 

  31. Cao T, Li T (2015) A combination of numeric genetic algorithm and Tabu search can be applied to molecular docking. Comput Biol Chem 28(4):303–312

    MathSciNet  MATH  Google Scholar 

  32. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Comput Chem J 19(28):1639–1662

    Article  Google Scholar 

  33. Guan B, Zhang C, Ning J (2016) EDGA: a population evolution direction-guided genetic algorithm for protein–ligand docking. J Comput Biol 23(7):585–596

    Article  Google Scholar 

  34. Fuhrmann JAN, Rurainski A, Lenhof H, Neumann D (2010) A new Lamarckian genetic algorithm for flexible ligand-receptor docking. J Comput Chem 31(9):1911–1918

    Google Scholar 

  35. Guan B, Zhang C, Ning J (2017) Genetic algorithm with a crossover elitist preservation mechanism for protein–ligand docking. AMB Express 7(1):174

    Article  Google Scholar 

  36. Chen H, Liu B, Huang H, Hwang S, Ho S (2006) SODOCK: swarm optimization for highly flexible protein – ligand docking. J Comput Chem 28(2):612–623

    Article  Google Scholar 

  37. Guan B, Zhang C, Zhao Y (2018) An efficient ABC_DE_based hybrid algorithm for protein–ligand docking. Int J Mol Sci 19(4):1181

    Article  Google Scholar 

  38. Huey R, Morris GM, Olson AJ, Goodsell DS (2007) A semiempirical free energy force field with charge-based desolvation. Softw News Update 28(6):1145–1152

    Google Scholar 

Download references

Acknowledgments

This work was funded by the National Natural Science Foundation Program of China (61572116 and 61572117). Thanks for the China Scholarship Council and reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Zhang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Jiang, D., Zhang, C. et al. A Novel Fireworks Algorithm for the Protein-Ligand Docking on the AutoDock. Mobile Netw Appl 26, 657–668 (2021). https://doi.org/10.1007/s11036-019-01412-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11036-019-01412-6

Keywords

Navigation