Skip to main content
Log in

Video streaming over the internet with optimal bandwidth resource allocation

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper, an adaptive framework for video streaming over the Internet is presented. The framework is a joint design of packet scheduling and rate control with optimal bandwidth resource allocation. The transmission rate is dynamically adjusted to obtain maximal utilization of the client buffer and minimal allocation of the bandwidth. Under the constraint of the transmission rate, a prioritized packet scheduling is designed to provide a better visual quality of video frames. The packet scheduling is a refined bandwidth allocation which takes into account of varying importance of the different packets in a compressed video stream. Moreover, the proposed approach is scalable with increasing multimedia flows in the distributed Internet environment. Comparisons are made with the most current streaming approaches to evaluate the performance of the framework using the H.264 video codec. The extensive simulation results show that the average Peak Signal to Noise Ratio (PSNR) increases in our proposed approach. It provides a better quality of the decoded frames, and the quality of the decoded frames changes more smoothly. The achieved video quality among different users also has a lower fluctuation, which indicates a fair sharing of network resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bajic IV, Tickoo O, Kalyanaraman AS, Woods JW (2003) Integrated end-to-end buffer management and congestion control for scalable video communications. In: IEEE ICIP’03, Barcelona, September 2003, pp 257–260

  2. Balk A, Gerla M, Maggiorini D, Sanadidi MY (2004) Adaptive video streaming: pre-encoded MPEG-4 with bandwidth scaling. Comput Networks 44(4):415–439

    Article  Google Scholar 

  3. Bansal D, Balakrishnan H (2001) Binomial congestion control algorithms. In: Proceedings of the IEEE INFOCOM’01, Anchorage, pp 631–640

  4. Bouras C, Gkamas A, Karaliotas A, Stamos K (2004) Architecture and performance evaluation for redundant multicast transmission supporting adaptive QoS. J Multimedia Tools Appl 25(1):85–110

    Article  Google Scholar 

  5. Cai L, Shen X, Pan J, Mark JW (2005) Performance analysis of TCP-friendly AIMD algorithms for multimedia applications. IEEE Trans Multimedia 7(2):339–353

    Article  Google Scholar 

  6. Chen I-R, Li S-T, Yen I-L (2005) Adaptive QoS control based on benefit optimization for video servers providing differentiated services. J Multimedia Tools Appl 25(2):167–185

    Article  Google Scholar 

  7. Chen S-C, Shyu M-L, Gray I, Luo H (2005) An adaptive rate-control streaming mechanism with optimal buffer utilization. J Syst Softw 75(3):271–282 (special issue on adaptive multimedia computing)

    Article  Google Scholar 

  8. Chou P, Miao Z (2006) Rate-distortion optimized streaming of packetized media. IEEE Trans Multimedia 8(2):390–404

    Article  Google Scholar 

  9. Cuetos P, Ross K (2003) Optimal streaming of layered video: joint scheduling and error concealment. In: Proceedings of the eleventh ACM international conference on Multimedia, Berkeley, CA, pp 55–64

  10. Dong J, He C, Zheng YF, Ewing RL (2005) AVP: a highly efficient transport protocol for low bit rate multimedia communications. J Multimedia Tools Appl 25(2):187–216

    Article  Google Scholar 

  11. Floyd S, Handley M, Padhye JM, Widmer J (2000) Equation-based congestion control for unicast applications. In: Proceedings of ACM SIGCOMM, Stockholm, August 2000, pp 43–56

  12. Jin S, Guo L, Matta I, Bestavros A (2003) A spectrum of TCP-friendly widow-based congestion control algorithms. IEEE/ACM Trans Netw 11(3):341–355

    Article  Google Scholar 

  13. Kang SH, Zakhor A (2003) Effective bandwidth based scheduling for streaming multimedia. In: Proceedings of ICIP, Barcelona, September 2003, pp 633–636

  14. Kim Y-G, Kim J, Kuo C-CJ (2004) TCP-friendly internet video with smooth and fast rate adaptation and network-aware error control. IEEE Trans Circuits Syst Video Technol 4(2): 256–268

    Article  Google Scholar 

  15. Krasic C, Walpole J, Feng W (2003) Quality-adaptive media streaming by priority drop. In: NOSSDAV. Monterey, June 2003, pp 112–121

  16. Kusmierek E, Du DHC (2005) Streaming video delivery over internet with adaptive end-to-end QoS. J Syst Softw 75(3):237–252

    Article  MathSciNet  Google Scholar 

  17. Luo H, Shyu M-L, Chen S-C (2005) A multi-buffer scheduling scheme for video streaming. In: Proceedings of the IEEE international conference on multimedia and expo (ICME), Amsterdam, 6–8 July 2005, pp 1218–1221

  18. Luo H, Shyu M-L, Chen S-C (2006) An optimal resource utilization scheme with end-to-end congestion control for continuous media stream transmission. Comput Networks 50(7):921–937

    Article  Google Scholar 

  19. Mielke M, Aygun R, Song Y, Zhang A (2002) Plus: probe-loss utilization streaming mechanism for distributed multimedia presentation systems. IEEE Trans Multimedia 4(4):561–577

    Article  Google Scholar 

  20. Joint Video Team of ISO/IEC MPEG and ITU-T VCEG (2002) Joint model number 1, revision 1 (JM-1R1)

  21. Rejaie R, Handley M, Estrin D (1999) RAP: an end-to-end rate-based congestion control mechanism for realtime streams in the internet. In: Proceedings of INFOCOM 99, New York, March 1999, pp 1337–1345

  22. Rhee I, Xu L (2005) Limitations in equation-based congestion control. In: Proceedings of ACM SIGCOMM. Philadelphia, PA, August 2005, pp 49–60

  23. Tunali ET, Kantarci A, Ozbek N (2005) Robust quality adaptation for internet video streaming. J Multimedia Tools Appl 27(3):431–448

    Article  Google Scholar 

  24. Vieron J, Guillemot C (2004) Real-time constrained TCP-compatible rate control for video over the internet. IEEE Trans Multimedia 6(3):634–646

    Article  Google Scholar 

  25. Wang B, Kurose JF, Sheony PJ, Towsley DF (2004) Multimedia streaming via TCP. In: ACM Multimedia, New York City, NY, October 2004, pp 908–915

  26. Widmer J, Denda R, Mauve M (2001) A survey on TCP-friendly congestion control. IEEE Netw 15(3):28–37

    Article  Google Scholar 

  27. Wu D, Hou YT, Zhang Y-Q (2000) Transporting real-time video over the internet: challenges and approaches. Proc IEEE 88(12):1855–1877

    Article  Google Scholar 

  28. Zhang Q, Zhu W, Zhang YQ (2001) Resource allocation for multimedia streaming over the internet. IEEE Trans Multimedia 3(3):339–355

    Article  Google Scholar 

  29. Zhu P, Zeng W, Li C (2007) Joint design of source rate control and QoS aware congestion control for video streaming over the internet. IEEE Trans Multimedia 9(2):366–376

    Article  Google Scholar 

  30. Ziviani A, Wolfinger BE, de Rezende JF, Duarte OCMB, Fdida S (2005) Joint adoption of QoS scheme for MPEG streams. J Multimedia Tools Appl 26(1):59–80

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongli Luo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, H., Shyu, ML. & Chen, SC. Video streaming over the internet with optimal bandwidth resource allocation. Multimed Tools Appl 40, 111–134 (2008). https://doi.org/10.1007/s11042-007-0187-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-007-0187-7

Keywords

Navigation