Skip to main content
Log in

Voronoi-based multi-level range search in mobile navigation

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Due to the universality and importance of range search queries processing in mobile and spatial databases as well as in geographic information system (GIS), numerous approaches on range search algorithms have been proposed in recent years. But ordinary range search queries focus only on a specific type of point objects. For queries which require to retrieve objects of interest locating in a particular region, ordinary range search could not get the expected results. In addition, most existing range search methods need to perform a searching on each road segments within the pre-defined range, which decreases the performance of range search. In this paper, we design a weighted network Voronoi diagram and propose a high-performance multilevel range search query processing that retrieves a set of objects locating in some specified region within the searching range. The experimental results show that our proposed algorithm runs very efficiently and outperforms its main competitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Aleksy M, Butter T, Schader M (2008) Architecture for the development of context-sensitive mobile applications. Mobile Inform Syst 4(2):105–117

    Google Scholar 

  2. Ash PF, Bolker ED (2004) Generalized Dirichlet tessellations. Geom Dedic 20(2):209–243

    MathSciNet  Google Scholar 

  3. Bayer R (1997) The universal b-tree for multidimensional indexing: general concepts. In: Proc. of worldwide computing and its applications (WWCA). Springer, New York, pp 198–209

    Google Scholar 

  4. Beckley DA, Evens MW, Raman VK (1985) Multikey retrieval from K-d trees and quad-trees. In: Proc. of ACM SIGMOD. ACM, New York, pp 291–301

    Google Scholar 

  5. Cantone D, Ferro A, Pulvirenti A, Recupero DR, Shasha D (2005) Antipole tree indexing to support range search and k-nearest neighbor search in metric spaces. IEEE Trans Knowl Data Eng 17(4):535–550

    Article  Google Scholar 

  6. Dijkstra EW (1959) A note on two problems in connection with graphs. Numer Math 1(22):269–271

    Article  MATH  MathSciNet  Google Scholar 

  7. Goh J, Taniar D (2004) Mining frequency pattern from mobile users. In: Proc. of 8th knowledge-based intelligent information and engineering systems (KES). Springer, Wellington, pp 795–801

    Chapter  Google Scholar 

  8. Goh J, Taniar D (2005) Mining parallel patterns from mobile users. Int J Bus Data Commun Netw 1(1):50–76

    Article  Google Scholar 

  9. Goh JY, Taniar D (2004) Mobile data mining by location dependencies. In: Proc. of 5th intelligent data engineering and automated learning (IDEAL). Springer, Wellington, pp 225–231

    Google Scholar 

  10. Gulliver SR, Ghinea G, Patel M, Serif T (2007) A context-aware tour guide: user implications. Mobile Inform Syst 3(2):71–88

    Google Scholar 

  11. Guttman A (1984) R-trees: a dynamic index structure for spatial searching. In: Proc. of ACM SIGMOD. ACM, New York, pp 47–57

    Google Scholar 

  12. Jayaputera J, Taniar D (2005) Data retrieval for location-dependent queries in a multi-cell wireless environment. Mobile Inform Syst 1(2):91–108

    Google Scholar 

  13. Kolahdouzan MR, Shahabi C (2004) Voronoi-based k nearest neighbor search for spatial network databases. In: Proc. of 30th VLDB. Morgan Kaufmann, Toronto, pp 840–851

    Chapter  Google Scholar 

  14. Kolahdouzan MR, Shahabi C (2005) Alternative solutions for continuous k nearest neighbor queries in spatial network databases. GeoInformatica 9(4):321–341

    Article  Google Scholar 

  15. Muhammad RB (2009) Range assignment problem on the Steiner tree based topology in ad hoc wireless networks. Mobile Inform Syst 5(1):53–64

    Google Scholar 

  16. Okabe A, Boots B, Sugihara K, Chiu SN (2000) Spatial tessellations: concepts and applications of Voronoi diagrams, 2nd edn. Wiley, West Sussex

    MATH  Google Scholar 

  17. Papadias D, Zhang J, Mamoulis N, Tao Y (2003) Query processing in spatial network databases. In: Proc. of 29th VLDB. Morgan Kaufmann, Berlin, pp 802–813

    Chapter  Google Scholar 

  18. Safar M (2005) K nearest neighbor search in navigation systems. Mobile Inform Syst 1(3):207–224

    Google Scholar 

  19. Safar M, Ebrahimi D (2006) eDAR algorithm for continuous KNN queries based on pine. Int J Inform Technol Web Eng 1(4):1–21

    Article  Google Scholar 

  20. Sharifzadeh M, Shahabi C (2008) Processing optimal sequenced route queries using Voronoi diagrams. GeoInformatica 12(4):411–433

    Article  Google Scholar 

  21. Taniar D, Goh J (2007) On mining movement pattern from mobile users. Int J Distrib Sensor Netw 3(1):69–86

    Article  Google Scholar 

  22. Taniar D, Rahayu JW (2002) A taxonomy of indexing schemes for parallel database systems. Distrib Parallel Databases 12(1):73–106

    Article  MATH  MathSciNet  Google Scholar 

  23. Taniar D, Rahayu JW (2004) Global parallel index for multi-processors database systems. Inf Sci 165(1–2):103–127

    Article  MATH  Google Scholar 

  24. Tran QT, Taniar D, Safar M (2009) Reverse k nearest neighbor and reverse farthest neighbor search on spatial networks. In: Hameurlain A (ed) Large-scale, T, data- and knowledge-centered systems, vol 1. Springer, Berlin, pp 353–372

    Chapter  Google Scholar 

  25. Waluyo AB, Rahayu JW, Taniar D, Srinivasan B (2009) Mobile service oriented architectures for NN-queries. J Netw Comput Appl 32(2):434–447

    Article  Google Scholar 

  26. Waluyo AB, Srinivasan B, Taniar D (2003) Optimal broadcast channel for data dissemination in mobile database environment. In: Proc. of 5th advanced parallel programming technologies (APPT). Springer, Xiamen, pp 655–664

    Chapter  Google Scholar 

  27. Waluyo AB, Srinivasan B, Taniar D (2004) A taxonomy of broadcast indexing schemes for multi channel data dissemination in mobile database. In: Proc. of 18th advanced information networking and applications (AINA). IEEE Computer Society, Fukuoka, Japan, pp 213–218

    Google Scholar 

  28. Waluyo AB, Srinivasan B, Taniar D (2005) Research on location-dependent queries in mobile databases. Comput Syst Sci Eng 20(2):77–93

    Google Scholar 

  29. Xuan K, Zhao G, Taniar D, Srinivasan B, Safar M, Gavrilova M (2009) Continuous range search based on network Voronoi diagram. Int J Grid Util Comput 1(4):328–335

    Article  Google Scholar 

  30. Xuan K, Zhao G, Taniar D, Srinivasan B, Safar M, Gavrilova M (2009) Network Voronoi diagram based range search. In: Proc. of 23rd advanced information networking and applications (AINA). IEEE Computer Society, Bradford, pp 741–748

    Chapter  Google Scholar 

Download references

Acknowledgement

This research has been partially funded by the Australian Research Council (ARC) Discovery Project (Project No: DP0987687).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kefeng Xuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xuan, K., Zhao, G., Taniar, D. et al. Voronoi-based multi-level range search in mobile navigation. Multimed Tools Appl 53, 459–479 (2011). https://doi.org/10.1007/s11042-010-0498-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-010-0498-y

Keywords

Navigation