Skip to main content
Log in

A local structure adaptive super-resolution reconstruction method based on BTV regularization

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Super-resolution (SR) image reconstruction has been one of the hottest research fields in recent years. The main idea of SR is to utilize complementary information from a set of low resolution (LR) images of the same scene to reconstruct a high-resolution image with more details. Under the framework of the regularization based SR, this paper presents a local structure adaptive BTV regularization based super-resolution reconstruction method to overcome the shortcoming of the Bilateral Total Variation (BTV) super resolution reconstruction model. The proposed method adaptively chooses prior model and regularization parameter according to the local structures. Experimental results show that the proposed method can get better reconstruction results and significantly reduces the manual workload of the regularization parameter selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aguena M, Mascarenhas N (2006) Multispectral image data fusion using POCS and super-resolution. Comput Vis Image Underst 102:178–187

    Article  Google Scholar 

  2. Capel D, Zisserman A (2000) Super-resolution enhancement of text image sequences. In: Proc. of the 6th intl. con. patt. recog., vol 1, pp 600–605

  3. Chaudhuri S, Taur D R (2005) High-resolution slow-motion sequencing-How to generate a slow-motion sequence from a bit stream. IEEE Signal Process Mag 22(2):16–24

    Article  Google Scholar 

  4. Fan C, Gong J, Zhu J (2006) POCS super-resolution sequence image reconstruction based on improvement approach of keren registraion method. Computer Engineering and Applications 36:28–31

    Google Scholar 

  5. Farsiu S, Robinson D, Elad M, Milanfar P (2004) Fast and robust multi-frame super-resolution. IEEE Trans Image Process 13(10):1327–1344

    Article  Google Scholar 

  6. Farsiu S, Elad M, Milanfar P (2006) Multi-frame demosaicing and super-resolution of color images [J]. IEEE Trans Image Process 15(1):151–159

    Article  Google Scholar 

  7. Goodman J (1968) Introduction to fourier oitics, vol 35(5). McGraw-Hill, New York, p 1513

    Google Scholar 

  8. Harris J (1964) Diffraction and resolving power. J Opt Soc Am 54(7):931–936

    Article  Google Scholar 

  9. He Y, Yap K, Che L, Chau L (2009) A soft MAP frame for blind super-resolution image reconstruction. Image Vis Comput 27(4):364–373

    Article  Google Scholar 

  10. Hong MC, Kang MG, Katsaggelos AK (1997) A regularized multi-channel restoration approach for globally optimal high resolution video sequence, vol 3024. SPIE VCIP, San Jose, CA, pp 1306–1317

  11. Hong MC, Kang MG, Katsaggelos AK (1997) An iterative weighted regularized algorithm for improving the resolution of video sequences. In: Proc. int. conf. image processing, vol 2, pp 474–477

  12. Hardie RC, Barnard KJ, Bognar JG, Armstrong EE, Watson EA (1998) High resolution image reconstruction from a sequence of rotated and translated frames and its application to an infrared imaging system. Opt Eng 73(1):247–260

    Google Scholar 

  13. Kim K, Kwon Y (2010) Single-Image super-resolution using sparse regression and natural image prior. IEEE Trans Pattern Anal Mach Intell 32(6):1127–1133

    Article  MathSciNet  Google Scholar 

  14. Krawcayk D, Rudnicki M (2007) Regulatization parameter selection in discrete ill-posed problems-the use of the U-curve. Int J Appl Math Comput Sci 17(2):157–164

    MathSciNet  Google Scholar 

  15. Lee ES, Kang MG (2003) Regularized adaptive high-resolution image reconstruction considering inaccurate subpixel registration. IEEE Trans Image Process 12(7):826–837

    Article  MathSciNet  Google Scholar 

  16. Protter M, Elad M (2009) Super resolution with probabilistic Motion estimation. IEEE Trans Image Process 18(8):1899-1904

    Article  MathSciNet  Google Scholar 

  17. Qin F, He X (2009) Video super-resolution reconstruction based on subpixel registration and iterative back projection. J Electron Imaging 18(1):01307(1–10)

    Google Scholar 

  18. Rudin L, Osher S, Fatemi E (1992) Nonlinear total variation based noise removal algorithms. Phys D 60:259–268

    Article  MATH  Google Scholar 

  19. Schultz R, Tevenson R (1996) Extraction of high-resolution frames from video sequences. IEEE Trans Image Process 5(6):996–1011

    Article  Google Scholar 

  20. Suresh KV, Kumar GM, Rajagopalan HN (2007) Super-resolution of license plates in real traffic videos. IEEE Trans Intell Transp Syst 8(2):321–331

    Article  Google Scholar 

  21. Takeda H, Milanfar P (2009) Super-resolution without explicit subpixel motion estimation. IEEE Trans Image Process 18(9):1958–1975

    Article  MathSciNet  Google Scholar 

  22. Tom BC, Katsaggelos AK (1996) An iterative algorithm for improving the resolution of video sequences. In: Proc. SPIE conf. visual communications and image processing. Orlando, FL, pp 1430–1438

  23. Tsai R, Huang T (1984) Multiple frame image restoration and registration. Advan Comp Visi Image Process 1:317–319

    Google Scholar 

  24. Yang J, Wright J (2010) Image super resolution via sparse representation. IEEE Trans Image Process 19(11):2861–2873

    Article  MathSciNet  Google Scholar 

  25. Yuan Q, Zhang L, Shen H, Li P (2010) Adaptive multiple-frame image super-resolution based on U-curve. IEEE Trans Image Process 19(12):3157–3170

    Article  MathSciNet  Google Scholar 

  26. Zeng W, Lu X (2012) A robust variational approach to super-resolution with nonlocal TV regularisation term. Imaging Sci J (in press). http://www.ingentaconnect.com/content/maney/isj/pre-prints;jsessionid=1t8zmp2h0xpsc.victoria

  27. Zeng W, Lu X (2012) A generalized DAMRF image modeling for super-resolution of license plates. IEEE Trans Intell Transp Syst 13(2):828–837

    Article  Google Scholar 

  28. Zhang J, Wei X(2009) Blind super-resolution image reconstruction based on POCS model. In: 2009 international conference on measuring technology and mechatronics automation, vol 1, pp 437–440

  29. Zhang X, Lam E (2008) Application of Tikhonov regularization to super-resolution reconstruction of brain MRI images. Lect Notes Comput Sci 4987:51–56

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobo Lu.

Additional information

This work was supported by National Natural Science Foundation of China under grant 60972001 and National Key Technologies R & D Program of China under grant 2009BAG13A06.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, L., Lu, X. & Yang, L. A local structure adaptive super-resolution reconstruction method based on BTV regularization. Multimed Tools Appl 71, 1879–1892 (2014). https://doi.org/10.1007/s11042-012-1311-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-012-1311-x

Keywords

Navigation