Skip to main content
Log in

Reversible fragile watermarking for locating tampered blocks in 2D vector maps

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

For 2D vector maps, obtaining good tamper localization performance and original content recovery with existing reversible fragile watermarking schemes is a technically challenging problem. Using an improved reversible watermarking method and a fragile watermarking algorithm based on vertex insertion, we propose a reversible fragile watermarking scheme that detects and locates tampered blocks with high accuracy while ensuring recovery of the original content. In particular, we propose dividing the features of the vector map into different blocks, calculating the block authentication watermarks and embedding the watermarks with different watermarking schemes. While the block division ensures superior accuracy of tamper localization, the reversible watermarking method and the fragile watermarking algorithm based on vertex insertion provide recovery of the original content. Experimental results show that the proposed scheme could detect and locate malicious attacks such as vertex/feature modification, vertex/feature addition, and vertex/feature deletion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Amat P, Puech W, Druon S, Pedeboy JP (2010) Lossless 3D steganography based on MST and connectivity modification. Signal Process Image Commun 25:400–412

    Article  Google Scholar 

  2. Barton JM (1997) Method and apparatus for embedding authentication information within digital data. United States Patent, Patent No: US 5646997

  3. Cayre F, Macq B (2003) Data hiding on 3-D triangle meshes. IEEE Trans Signal Process 51:939–949

    Article  MathSciNet  Google Scholar 

  4. Celik MU, Sharma G, Tekalp AM, Saber E (2005) Lossless generalized-LSB data embedding. IEEE Trans Image Process 14:253–266

    Article  Google Scholar 

  5. Chang CC, Kieu TD (2010) A reversible data hiding scheme using complementary embedding strategy. Inform Sci 180:3045–3058

    Article  Google Scholar 

  6. Doncel VR, Nikolaidis N, Pitas I (2007) An optimal detector structure for the Fourier descriptors domain watermarking of 2D vector graphics. IEEE Trans Vis Comput Graph 13:851–863

    Article  Google Scholar 

  7. Dziembowski S, Pietrzak K (2008) Leakage-resilient cryptography. Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008, pp 293–302

  8. ESRI shapefile technical description (1998) http://www.esri.com/library/whitepapers

  9. Fei P, Yu-zhou L, Min L, Xing-ming S (2011) A reversible watermarking scheme for 2D CAD engineering graphics based on improved difference expansion. Comput Aided Des 43:1018–1024

    Article  Google Scholar 

  10. Fridrich J, Goljan M, Du R (2001) Invertible authentication. Proc SPIE 4314:197–208

    Article  Google Scholar 

  11. Giannoula A, Nikolaidis N, Pitas I (2002) Watermarking of sets of polygonal lines using fusion techniques. Proc IEEE Int Conf Multimedia Expo 2:549–552

    Article  Google Scholar 

  12. Gou H, Wu M (2005) Data hiding in curves with application to fingerprinting maps. IEEE Trans Signal Process 53:3988–4005

    Article  MathSciNet  Google Scholar 

  13. Harris U (1999, updated 2008) Taylor Rookery 1:5000 Topographic GIS Dataset. Australian Antarctic Data Centre - CAASM Metadata. http://gcmd.nasa.gov/KeywordSearch/Metadata.do?Portal=amd_au&MetadataView=Full&MetadataType=0&KeywordPath=&OrigMetadataNode=AADC&EntryId=Tayl5k. Accessed 9 June 2012

  14. Harris, U (1999, updated 2010) Windmill Islands 1:50000 Topographic GIS Dataset. Australian Antarctic Data Centre - CAASM Metadata. http://gcmd.nasa.gov/KeywordSearch/Metadata.do?Portal=amd_au&MetadataView=Full&MetadataType=0&KeywordPath=&OrigMetadataNode=AADC&EntryId=Wind50k. Accessed 9 June 2012

  15. Harris U (1999, updated 2008) Rauer Group 1:50000 Topographic GIS Dataset, Australian Antarctic Data Centre - CAASM Metadata (http://gcmd.nasa.gov/KeywordSearch/Metadata.do?Portal=amd_au&MetadataView=Full&MetadataType=0&KeywordPath=&OrigMetadataNode=AADC&EntryId=Raur50k) Accessed 9 June 2012

  16. Harris U (1999, updated 2008) SR41-42 Northern Prince Charles Mountains - 1:1 Million Topographic GIS Dataset. Australian Antarctic Data Centre - CAASM Metadata. http://gcmd.nasa.gov/KeywordSearch/Metadata.do?Portal=amd_au&MetadataView=Full&MetadataType=0&KeywordPath=&OrigMetadataNode=AADC&EntryId=SR41-42. Accessed 9 June 2012

  17. Holliman M, Memon N (2000) Counterfeiting attacks on oblivious block-wise independent invisible watermarking schemes. IEEE Trans Image Process 9:432–441

    Article  Google Scholar 

  18. Honsinger CW, Jones PW, Rabbani M, Stoffel JC (2001) Lossless recovery of an original image containing embedded data. United States Patent, Patent No: US 6278791 B1

  19. Horness E, Nikolaidis N, Pitas I (2007) Blind city maps watermarking utilizing road width information. European Signal Processing Conference, EUSIPCO 2007, pp 2291–2295

  20. Institute of Electrical and Electronics Engineers (IEEE) (1985) IEEE standard for binary floating-point arithmetic. ANSI/IEEE Standard 754–1985

  21. Lee S-H, Kwon K-R (2011) Vector watermarking scheme for GIS vector map management. Multimedia Tools Appl. doi:10.1007/s11042-011-0894-y

  22. López C (2002) Watermarking of digital geospatial datasets: a review of technical, legal and copyright issues. Int J Geogr Inf Sci 16:589–607

    Article  Google Scholar 

  23. Niu X, Shao C, Wang X (2006) A survey of digital vector map watermarking. Int J Innov Comput Inf Control 2:1301–1316

    Google Scholar 

  24. Ohbuchi R, Ueda H, Endoh S (2002) Robust watermarking of vector digital maps. Proc IEEE Int Conf Multimedia Expo 1:577–580

    Google Scholar 

  25. Ohbuchi R, Ueda H, Endoh S (2003) Watermarking 2D vector maps in the mesh-spectral domain. Proceedings of the Shape Modeling International, pp 216–225. doi:10.1109/SMI.2003.1199619

  26. Shao C, Wang X, Xu X (2005) Security issues of vector maps and a reversible authentication scheme. Doctoral Forum of China, pp 326–331 (in Chinese)

  27. Solachidis V, Pitas I (2004) Watermarking polygonal lines using Fourier descriptors. IEEE Comput Graph Appl 24:44–51

    Article  Google Scholar 

  28. Sonnet H, Isenberg T, Dittmann J, Strothotte T (2003) Illustration watermarks for vector graphics. Proceedings of the 11th Pacific Conference on Computer Graphics and Applications, pp 73–82

  29. Tian J (2003) Reversible data embedding using a difference expansion. IEEE Trans Circ Syst Video Technol 13:890–896

    Article  Google Scholar 

  30. Voigt M, Yang B, Busch C (2004) Reversible watermarking of 2D-vector data. Proceedings of the Multimedia and Security Workshop, pp 160–165

  31. Wang C, Peng Z, Peng Y, Yu L, Wang J, Zhao Q (2010) Watermarking geographical data on spatial topological relations. Multimedia Tools Appl. doi:10.1007/s11042-010-0536-9

  32. Wang X, Shao C, Xu X, Niu X (2007) Reversible data-hiding scheme for 2-D vector maps based on difference expansion. IEEE Trans Inf Forensic Secur 2:311–320

    Article  Google Scholar 

  33. Wang PC, Wang CM (2007) Reversible data hiding for point-sampled geometry. J Inf Sci Eng 23:1889–1900

    Google Scholar 

  34. Wu H-T, Cheung Y-M (2010) Reversible watermarking by modulation and security enhancement. IEEE Trans Instrum Meas 59:221–228

    Article  Google Scholar 

  35. Wu H-T, Dugelay J-L (2008) Reversible watermarking of 3D mesh models by prediction-error expansion. Proceedings of the 2008 IEEE 10th Workshop on Multimedia Signal Processing, MMSP 2008, pp 797–802

  36. Yan H, Li J, Wen H (2011) A key points-based blind watermarking approach for vector geo-spatial data. Comput Environ Urban Syst 35:485–492

    Article  Google Scholar 

  37. Zheng L, Li Y, Feng L, Liu H (2010) Research and implementation of fragile watermark for vector graphics. Int Conf Comput Eng Technol 1:1522–1525

    Google Scholar 

  38. Zheng L, You F (2009) A fragile digital watermark used to verify the integrity of vector map. International Conference on E-Business and Information System Security (EBISS)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nana Wang.

Appendix. The proof of the algorithm in Section 2.2

Appendix. The proof of the algorithm in Section 2.2

Here, we prove that no watermarked coordinate exceeds the original coordinate range as long as the maximum and the minimum coordinates do not carry watermark bits.

We first explain that all watermarked coordinates of X are greater than x min (the minimum coordinate of X) as long as x min does not carry watermark bits. Suppose \( x_{{\min }}^{r}\left( {x_{{\min }}^{r} = x_{{l,k}}^{s} + x_{{m,k}}^{s},\;1 \le k \le n} \right) \) is the regulated coordinate transformed from x min , \( x_{{l,\min}}^r\left( {x_{{l,\min}}^r=x_{l,k}^s} \right) \) and \( x_{{m,\min}}^r\left( {x_{{m,\min}}^r=x_{m,k}^s} \right) \) are the decimal part and the integer part of \( x_{\min}^r \), respectively. As shown in Fig. 16a, two cases may arise when embedding the watermark, namely embedding the watermark into \( x_{l,i}^s\left( {1\leq i<k\leq n} \right) \) and embedding the watermark into \( x_{l,t}^s\left( {1\leq k<t\leq n} \right) \).

Fig. 16
figure 16

a The position of \( x_{{l,\min}}^r \) in \( X_l^s \) and the position of \( x_{{m,\min}}^r \) in \( X_m^s \) and b the position of \( x_{{l,\max}}^r \) in \( X_l^s \) and the position of \( x_{{m,\max}}^r \) in \( X_m^s \)

If the watermark is embedded into \( x_{l,i}^s \), the following will hold,

$$ \begin{array}{*{20}c} {} \hfill & {\left\{ {\begin{array}{*{20}c} {x_{l,i}^s<x_{l,k}^s} \\ {x_{l,i}^s+x_{m,i}^s>x_{l,k}^s+x_{m,k}^s=x_{\min}^r} \\ \end{array}} \right.} \hfill \\ \Rightarrow \hfill & {\left\{ {\begin{array}{*{20}c} {x_{m,i}^s>x_{m,k}^s} \\ {x_{l,i}^s+x_{m,i}^s>x_{l,k}^s+x_{m,k}^s=x_{\min}^r} \\ \end{array}} \right.} \hfill \\ \end{array}. $$
(26)

Thus, after embedding the watermark into \( x_{l,i}^s \), x min is still the minimum coordinate of X.

If the watermark is embedded into \( x_{l,t}^s \), we have the following,

$$ \begin{array}{*{20}c} {} \hfill & {\left\{ {\begin{array}{*{20}c} {x_{l,t}^s\geq x_{l,k}^s} \hfill \\ {x_{l,t}^s+x_{m,t}^s>x_{l,k}^s+x_{m,k}^s=x_{\min}^r} \hfill \\ \end{array}} \right.} \hfill \\ \Rightarrow \hfill & {\left\{ {\begin{array}{*{20}c} {} \hfill & {} \hfill & {\left\{ {\begin{array}{*{20}c} {x_{l,t}^s>x_{l,k}^s} \hfill \\ {x_{m,t}^s\geq x_{m,k}^s} \hfill \\ \end{array}\Rightarrow \left\{ {\begin{array}{*{20}c} {x_{l,t}^s{{\prime}} >x_{l,k}^s} \\ {x_{l,t}^s{\prime} +x_{m,t}^s>x_{l,k}^s+x_{m,k}^s=x_{\min}^r} \\ \end{array}} \right.} \right.} \hfill \\ {or} \hfill & {} \hfill & {} \hfill \\ {} \hfill & {} \hfill & {\left\{ {\begin{array}{*{20}c} {x_{l,t}^s=x_{l,k}^s} \hfill \\ {x_{m,t}^s>x_{m,k}^s} \hfill \\ \end{array}\Rightarrow x_{l,t}^s{\prime} +x_{m,t}^s>x_{l,k}^s+x_{m,k}^s=x_{\min}^r} \right.} \hfill \\ \end{array}} \right.} \hfill \\ \end{array}. $$
(27)

Thus, after embedding the watermark into \( x_{l,t}^s,{x_{min }} \) is still the minimum coordinate of X.

Next, we will show that all watermarked coordinates are less than x max (the maximum coordinate of X), as long as x max does not carry watermark bits. Suppose \( x_{{\max }}^{r}\left( {x_{{\max }}^{r} = x_{{l,h}}^{s} + x_{{m,h}}^{s}\;1 \le h \le n} \right) \) is the regulated coordinate transformed from \( {x_{max }},x_{{l,\max}}^s\left( {x_{{l,\max}}^s=x_{l,h}^s} \right) \) and \( x_{{m,\max}}^s\left( {x_{{m,\max}}^s=x_{m,h}^s} \right) \) are the decimal part and the integer part of \( x_{\max}^r \), respectively. As shown in Fig. 16b, there may also exist two cases when embedding the watermark, namely embedding the watermark into \( x_{l,i}^s\left( {1\leq i < h\leq n} \right) \) and embedding the watermark into \( x_{l,t}^s\left( {1\leq h<t\leq n} \right) \).

If the watermark is embedded into \( x_{l,i}^s \), the following will hold,

$$ \begin{array}{*{20}c} {} \hfill & {\left\{ {\begin{array}{*{20}c} {x_{l,i}^s<x_{l,h}^s} \\ {x_{l,i}^s+x_{m,i}^s<x_{l,h}^s+x_{m,h}^s=x_{\max}^r} \\ \end{array}} \right.} \hfill \\ \Rightarrow \hfill & {\left\{ {\begin{array}{*{20}c} {x_{m,i}^s\leq x_{m,h}^s} \\ {x_{l,i}^s{\prime} <x_{l,h}^s} \\ {x_{l,i}^s{\prime} +x_{m,i}^s<x_{l,h}^s+x_{m,h}^s=x_{\max}^r} \\ \end{array}} \right.} \hfill \\ \end{array} $$
(28)

Thus, after embedding the watermark into \( x_{l,i}^s,\;{x_{max }} \) is still the maximum coordinate of X.

If the watermark is embedded into \( x_{l,t}^s \), we have the following,

$$ \begin{array}{*{20}c} {} \hfill & {\left\{ {\begin{array}{*{20}c} {x_{l,t}^s\geq x_{l,h}^s} \\ {x_{l,t}^s+x_{m,t}^s<x_{l,h}^s+x_{m,h}^s=x_{\max}^r} \\ \end{array}} \right.} \hfill \\ \Rightarrow \hfill & {\left\{ {\begin{array}{*{20}c} {x_{m,t}^s<x_{m,h}^s} \\ {x_{l,t}^s{\prime} +x_{m,t}^s<x_{l,h}^s+x_{m,h}^s=x_{\max}^r} \\ \end{array}} \right.} \hfill \\ \end{array} $$
(29)

Thus, after embedding the watermark into \( x_{l,t}^s,\;{x_{max }} \) is still the maximum coordinate of X.

Therefore, as long as x min and x max do not carry watermark bits, our method can guarantee that the watermarked coordinates are still within the original coordinate range (x min , x max ). With the original sorted order and the original coordinate range unchanged, extracting the embedded watermarks from a watermarked block of a 2D vector map correctly can be guaranteed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, N., Men, C. Reversible fragile watermarking for locating tampered blocks in 2D vector maps. Multimed Tools Appl 67, 709–739 (2013). https://doi.org/10.1007/s11042-012-1333-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-012-1333-4

Keywords

Navigation