Skip to main content
Log in

Mesh-based anisotropic cloth deformation for virtual fitting

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

According to the anisotropic property in most real-world cloth for virtual fitting, this paper proposes a novel dynamic cloth simulation method via geometric deformation energy model that preserves geometric features well to achieve cloth behaviors with various material effects. We first construct an objective deformation energy with the terms including vertex position, edge length, dihedral angle, and gravitation, then we conduct a numerical solution in the least square sense. In order to establish the dynamic cloth deformation solution, we further analyze the corresponding relationship between different weights in front of geometric energy terms and material properties by comparison with the real photographs of typical real fabrics. Establishing a dynamic weight-regulation measure can model similar cloth anisotropic behaviors for virtual fitting applications in digital home. The experiments show that our approach effectively provide more rich cloth deformation results with distinctive material effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. 3D, C (2011) CLO Virtual Fashion Inc. http://www.clo3d.com/

  2. Alexa M (2003) Differential coordinates for local mesh morphing and deformation. Vis Comput 19(2):105–114

    MATH  Google Scholar 

  3. Baraff D, Witkin A (1998) Large steps in cloth simulation. In: SIGGRAPH ’98 proceedings of the 25th annual conference on computer graphics and interactive techniques, pp 43–54

  4. Breen D, House D, Wozny M (1994) A particle-based model for simulating the draping behavior of woven cloth. Tex Res J 64(11):663–685

    Article  Google Scholar 

  5. Bridson R, Fedkiw R, Anderson J (2003) Simulation of clothing with folds and wrinkles. In: SCA ’03 proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on computer animation, pp 28–36

  6. Chen M, Tang K (2010) A fully geometric approach for developable cloth deformation simulation. Vis Comput 36(6):853–863

    Article  Google Scholar 

  7. De Aguiar E, Sigal L, Treuille A, Hodgins J (2010) Stable spaces for real-time clothing. ACM Trans Graph (TOG) 29(4):106:1–9

    Article  Google Scholar 

  8. Decaudin P, Julius D, Wither J, Boissieux L, Sheffer A, Cani M (2006) Virtual garments: a fully geometric approach for clothing design. Comput Graph Forum 25(3):625–634

    Article  Google Scholar 

  9. Goldenthal R, Harmon D, Fattal R, Bercovier M, Grinspun E (2009) Efficient simulation of inextensible cloth. In: ACM Transactions on Graphics (TOG)-proceedings of ACM SIGGRAPH 2007, pp 557–564

  10. Graphite (2010) ALICE geometry and lighting, vol 2. http://alice.loria.fr/index.php/software.html.

  11. Hadap S, Bongarter E, Volino P, Magnenat-Thalmann N (1999) Animating wrinkles on clothes. In: Visualization ’99. Proceedings, pp 175–523

  12. Hinds B, McCartney J (1990) Interactive garment design. Vis Comput 6(2):53–61

    Article  Google Scholar 

  13. Huang J, Shi X, Liu X, Zhou K, Wei L, Teng S, Bao H, Guo B, Shum H (2006) Subspace gradient domain mesh deformation. In: ACM Transactions on Graphics (TOG)-proceedings of ACM SIGGRAPH 2006, vol 25, pp 1126–1134

  14. Huang J, Zhang H, Shi X, Liu X, Bao H (2006) Interactive mesh deformation with pseudo material effects. Comput Anim Virtual Worlds 17(3–4):383–392

    Article  Google Scholar 

  15. Ju T, Schaefer S, Warren J (2005) Mean value coordinates for closed triangular meshes. In: ACM Transactions on Graphics (TOG)-proceedings of ACM SIGGRAPH 2005 vol 24(3), pp 561–566

  16. Julius D, Kraevoy V, Sheffer A (2005) D-charts: quasi-developable mesh segmentation. Comput Graph Forum 24(3):581–590

    Article  Google Scholar 

  17. Kang M, Lee J (2007) A real-time cloth draping simulation algorithm using conjugate harmonic functions. Comput Graph 31(2):271–279

    Article  MathSciNet  Google Scholar 

  18. Lewis J, Cordner M, Fong N (2000) Pose space deformation: a unified approach to shape interpolation and skeleton-driven deformation. In: Proceedings of the 27th annual conference on computer graphics and interactive techniques, pp 165–172

  19. Lipman Y, Sorkine O, Cohen-Or D, Levin D, Rossi C, Seidel H (2004) Differential coordinates for interactive mesh editing. In: Shape modeling applications, 2004 Proceedings, pp 181–190

  20. Liu Y, Pottmann H, Wallner J, Yang Y, Wang W (2006) Geometric modeling with conical meshes and developable surfaces. ACM Trans Graph (TOG) 25(3):681–689

    Article  Google Scholar 

  21. Magnenat-Thalmann N (2010) Modeling and simulating bodies and garments. Springer, Ltd

  22. MayaCloth (2010) http://caad.arch.ethz.ch/info/maya/MayaCloth. Autodesk

  23. Müller M, Chentanez N (2010) Wrinkle meshes. In: Proceedings of the 2010 ACM SIGGRAPH/Eurographics symposium on computer animation, pp 85–92

  24. Popa T, Julius D, Sheffer A (2006) Material-aware mesh deformations. In: Shape modeling and applications, pp 1–12

  25. Popa T, Zhou Q, Bradley D, Kraevoy V, Fu H, Sheffer A, Heidrich W (2009) Wrinkling captured garments using space-time data-driven deformation. Comput Graph Forum 28(2):427–435

    Article  Google Scholar 

  26. Provot X (1995) Deformation constraints in a mass-spring model to describe rigid cloth behaviour. In: Graphics interface, pp 147–157

  27. Sederberg T, Parry S (1986) Free-form deformation of solid geometric models. ACM Siggraph Comput Graphics 20(4):151–160

    Article  Google Scholar 

  28. Sorkine O, Alexa M (2007) As-rigid-as-possible surface modeling. In: SGP ’07 proceedings of the fifth Eurographics symposium on geometry, pp 109–116

  29. Sorkine O, Cohen-Or D, Lipman Y, Alexa M, Rossl C, Seidel H (2004) Laplacian surface editing. In: Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on geometry processing, pp 175–184

  30. Tang K, Chen M (2009) Quasi-developable mesh surface interpolation via mesh deformation. IEEE Trans Vis Comput Graph 15(3):518–528

    Article  Google Scholar 

  31. Thomaszewski B, Pabst S (2009) Continuum-based strain limiting. Comput Graph Forum 28(2):569–576

    Article  Google Scholar 

  32. Wang H, Hecht F, Ramamoorthi R, O’Brien J (2010) Example-based wrinkle synthesis for clothing animation. ACM Trans Graph (TOG) 29(4):107:1–8

    MATH  Google Scholar 

  33. Weil J (1986) The synthesis of cloth objects. In: SIGGRAPH ’86 proceedings of the 13th annual conference on computer graphics and interactive techniques, vol 20, pp 49–54

  34. Xu W, Zhou K, Yu Y, Tan Q, Peng Q, Guo B (2007) Gradient domain editing of deforming mesh sequences. ACM Trans Graph (TOG) 26(3):84:1–10

    Article  MATH  Google Scholar 

  35. Yu Y, Zhou K, Xu D, Shi X, Bao H, Guo B, Shum H (2004) Mesh editing with poisson-based gradient field manipulation. In: ACM Transactions on Graphics (TOG)-proceedings of ACM SIGGRAPH 2004, vol 23, pp 644–651

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China (61073131, 61272192, 61100080), NSFC-Guangdong Joint Fund (No. U1135003, U0935004), the National Key Technology R&D Program (No. 2011BAH27B01, 2011BHA16B08), the Industryacademy- research Project of Guangdong (No. 2011A091000032), Scholarship Award for Excellent Doctoral Student Granted by Ministry of Education 2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruomei Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, L., Wang, R., Su, Z. et al. Mesh-based anisotropic cloth deformation for virtual fitting. Multimed Tools Appl 71, 411–433 (2014). https://doi.org/10.1007/s11042-013-1437-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-013-1437-5

Keywords

Navigation