Skip to main content
Log in

Pan-sharpening via regional division and NSST

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper, a novel Pan-sharpening algorithm for high resolution Panchromatic (HR PAN) and low resolution multispectral image (LR MS) via regional division and Non-sampled shift-invariance shearlet transform (NSST) is proposed. The purpose of our algorithm is to fuse the LR MS and the HR PAN image for different objects respectively, in order to solve the spectral distortion and spatial resolution problems in the Pan-sharpened image. Firstly, the LR MS and the HR PAN images are divided into structure and non-structure regions respectively, and a regional association map is set according to the division result. A regional similarity measure, degree of regional match (DRM), is proposed to evaluate the correction of the two regions. And a fusion rule is designed based on DRM. Because of the flexibility direction features, NSST can represent the edge information of the image better. Hence the LR MS and the HR PAN images are decomposed by the NSST, and the Pan-sharpened image can be obtained by the designed rule. Experimental results have proved that the proposed algorithm has a better Pan-sharpening result than other methods do.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Antoine JP, Murenzi R, Vandergheynst P (1999) “Directional wavelets revisited: cauchy wavelets and symmetry detection in patterns”, applied and computational. Harmon Anal 6(3):314–345

    Article  MathSciNet  Google Scholar 

  2. Ballester C, Caselles V, Igual L et al (2006) A variational model for P+XS image fusion. Int J Comput Vis 69(1):43–58

    Article  Google Scholar 

  3. Candes E, Demanet L, Donoho D et al (2006) Fast discrete curvelet transforms. Multiscale Sci Model Simul 5(3):861–899

    Article  MathSciNet  Google Scholar 

  4. Candès EJ, Donoho DL (1999) “Ridgelets: a key to Higher-dimensional intermittncy?”, philosophical transactions of the royal society of London. Ser A: Math Phys Eng Sci 357(1760):2495–2509

    MathSciNet  Google Scholar 

  5. Chen S, Su H, Zhang R et al (2008) The tradeoff analysis for remote sensing image fusion using expanded spectral angle mapper. Sensors 8(1):520–528

    Article  MathSciNet  Google Scholar 

  6. Chikr El-Mezouar M, Taleb N, Kpalma K et al (2011) IEEE Trans Geosci Remote Sens 49(5):1590–1602

    Article  Google Scholar 

  7. Do MN, Vetterli M (2005) The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans Image Process 14(12):2091–2106

    Article  MathSciNet  Google Scholar 

  8. Easley G, Labate D, Lim WQ (2008) Sparse directional image representations using the discrete shearlet transform. Appl Comput Harmon Anal 25(1):25–46

    Article  MathSciNet  Google Scholar 

  9. Guo K, Labate D (2007) Optimally sparse multidimensional representation using shearlets. SIAM J Math Anal 39(1):298–318

    Article  MathSciNet  Google Scholar 

  10. Lewis JJ, O’Callaghan RJ, Nikolov SG et al (2007) Pixel-and region-based image fusion with complex wavelets. Information Fusion 8(2):119–130

    Article  Google Scholar 

  11. Li S, Yang B (2008) Multifocus image fusion using region segmentationanf spatial frequency. Image Vis Comput 26(7):971–979

    Article  Google Scholar 

  12. Lim W Q (2009) “Discrete Shearlet Transform: New Multiscale Directional Image Representation”, SAMPTA’09, International Conference on Sampling Theory and Applications, 2009.

  13. Lim WQ (2010) The discrete shearlet transform: a new directional transform and compactly supported shearlet frames. IEEE Trans Image Process 19(5):1166–1180

    Article  MathSciNet  Google Scholar 

  14. Miao QG, Shi C, Xu PF et al (2011) A novel algorithm of image fusion using shearlets. Opt Commun 284(6):1540–1547

    Article  MATH  Google Scholar 

  15. Nencini F, Garzelli A, Baronti S (2007) Remote sensing image fusion using the curvelet transform. Information Fusion 8(2):143–156

    Article  Google Scholar 

  16. Rahmani S, Strait M, Merkurjev D et al (2010) An adaptive HIS pan-sharpening method. IEEE Trans Geosci Remote Sens 7(4):746–750

    Article  MATH  Google Scholar 

  17. Ranchin T, Wald L (2000) Fusion of high spatial and spectral resolution images: the ARSIS concept and its implementation. Photogramm Eng Remote Sens 66(1):49–61

    MATH  Google Scholar 

  18. Saeedi J, Faez K (2011) A new pan-sharpening method using multiobjective partical swarm optimization and the shiftable contourlet transform. ISPRS J Photogramm Remote Sens 66(3):365–381

    Article  MathSciNet  Google Scholar 

  19. Shah VP, Younan NH, King RL (2008) An efficient pan-sharpening method via a combined adaptive PCA approach and contourlets. IEEE Trans Geosci Remote Sens 46(5):1323–1335

    Article  Google Scholar 

  20. Shahdoosti H R, Ghassemian H (2012) “Spatial PCA as a new method for image fusion,” Artificial Intelligence and Signal Processing (AISP), 2012 16th CSI International Symposium on. IEEE. 090-094

  21. Shi C, Miao QG et al (2013) A novel algorithm of image fusion based on shearlets and PCNN. Neurocomputing 117(10):47–53

    Google Scholar 

  22. Tu TM, Huang PS, Hung CL, Chang CP (2004) A fast intensity-Hue-Shturation fusion technique with spectral adjustment for IJNOS imagery. IEEE Trans Geosci Remote Sens 1(4):309–312

    Article  Google Scholar 

  23. Tu TM, Su SC, Shyu HC et al (2001) A new look at HIS like image fusion methods. Inf Fusion 2(3):177–186

    Article  Google Scholar 

  24. Wang ZJ, Ziou D, Armenakis C et al (2007) Comparative analysis of image fusion methods. IEEE Trans Geosci Remote Sens 43(6):1391–1402

    Article  MATH  Google Scholar 

  25. Zhang Y, Hong G (2005) An HIS and wavelet integrated approach to improve pan-sharpening visual quality of natural colour IKNOS and quickbird images. Inf Fusion 70(6):225–234

    Article  Google Scholar 

Download references

Acknowledgments

The work was jointly supported by the National Basic Research Program (973 Programs) of China (No. 2013CB329402), the National Natural Science Foundations of China (No. 61173090, 61072109, 61272280, 41271447, 61272195), the Program for New Century Excellent Talents in Universtity (NCET-12-0919), The Fundamental Research Funds for the Central Universities (No. K5051203020, K5051203001, K5051303016, K5051303018 and K50513100006), the Creative Project of Science and Technology State of xi’an (No. CXY1341(6)), the National Research Foundation for the Doctoral Program of Higher Education of China (No. 20110203110006), the Fund for Foreign Scholars in University Research and Teaching Programs (the 111 Project) (No. B07048), the Program for Cheung Kong Scholars and Innovative Research Team University (NO. IRT1170). An EU FP7 IRSES grant (No. 247619) on “Nature Inspired Computation and its Applications (NICaiA)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiguang Miao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, C., Liu, F. & Miao, Q. Pan-sharpening via regional division and NSST. Multimed Tools Appl 74, 7843–7857 (2015). https://doi.org/10.1007/s11042-014-2027-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-014-2027-x

Keywords

Navigation