Skip to main content
Log in

Local and global structure preserving hashing for fast digital fingerprint tracing

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Digital fingerprinting is a promising approach to protect multimedia contents from unauthorized redistribution. Whereas, large scale and high dimensionality make existing fingerprint detection methods fail to trace the traitors efficiently. To handle this problem, we propose a novel local and global structure preserving hashing to conduct fast fingerprint detection. This is the first work that introduces hash-based similarity search method to perform fingerprint detection. Applying the hashing method, we obtain a neighborhood-preserving low-dimensional representation (e. g. hash code) for each fingerprint. Through hash codes, we can find the nearest neighbors of the extracted fingerprint, thereby tracing the real traitors within a small range. Preserving the local structure facilitates to find the nearest neighbors of the query fingerprint efficiently, and preserving the global structure ensures hash codes of fingerprints as discriminative as possible. These properties make the proposed approach efficient to trace the real traitors. Extensive experiments demonstrate that the proposed approach outperforms traditional linear scan detection methods in term of efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Barg A, Blakley GR, Kabatiansky G (2003) Digital fingerprinting codes: problem statements, constructions, identification of traitors. IEEE Trans Info Theory 49(4):852–865

    Article  MathSciNet  Google Scholar 

  2. Boneh D, Shaw J (1998) Collusion-secure fingerprinting for digital data. IEEE Trans Info Theory 44(5):1897–1905

    Article  MathSciNet  Google Scholar 

  3. Cha BH, Kuo CCJ (2009) Robust MC-CDMA-Based fingerprinting against time-varying collusion attacks. IEEE Trans Inf Forensics Secur 4(3):302–317

    Article  MATH  Google Scholar 

  4. Chen X, Cai D (2011) Large scale spectral clustering with landmark-based representation. In: Proceedings of the twenty-fifth AAAI conference on artificial intelligence (AAAI)

  5. Cox I, Kilian J, Leighton F, Shamoon T (1997) Secure spread spectrum watermarking for multimedia. IEEE Trans Image Process 6(12):1673–1687

    Article  Google Scholar 

  6. Dittmann J, Schmitt P, Saar E, Schwenk J, Ueberberg J (2000) Combining digital watermarks and collusion secure figerprints for digital images. J Electron Imagimg 9(4):456–467

    Article  MATH  Google Scholar 

  7. He S, Wu M (2006) Joint coding and embedding techniques for multimedia fingerprinting. IEEE Trans Inf Forensics Secur 1(2):231–247

    Article  Google Scholar 

  8. Poor HV (1999) A Introduction to Signal Detecion and Estimation. Springer-Verlag, New York

    Google Scholar 

  9. Hartigan JA, Wong MA (2002) A K-Means Clustering Algorithm. J R Stat Soc 28(1):100–108

    MATH  Google Scholar 

  10. He Shan, Min Wu (2006) Joint coding and embedding techniques for Multimedia Fingerprinting. IEEE Trans Inf Forensics Secur 1(2):231–247

    Article  MATH  Google Scholar 

  11. Guttman A (1984) R-trees: a dynamic index structure for spatial searching. In: Proceedings of annual meeting SIGMOD 84, Vol. 14, ACM (Order n 472840), pp 47–57

  12. Jerome HF, Jon LB, Raphael AF (1977) An algorithm for finding best matches in logarithmic expected time. ACM Trans Math Softw 3(3):209–226

    Article  Google Scholar 

  13. Mayur D, Piotr I, Nicole I, Mirrokni VSLocality-sensitive hashing scheme based on p-stable distributions. In: Proceedings of 20th SCG, pp 253–262

  14. Kulis B, Darrell TLearning to hash with binary reconstructive embeddings, Tech Rep

  15. Ruslan S, Geoffrey H (2009) Semantic hashing. Inter J Approx Reason 50(7):969–978

    Article  Google Scholar 

  16. Lin R-S, Ross DA, Yagnik J, hashing SPEC (2010) Similarity preserving algorithm for entropy-based coding. IEEE Conf Comput Vis Pattern Recognit (CVPR):848–854

  17. Liu W, Wang J, Kumar S, Chang S-F (2011) Hashing with Graphs, Proceedings of the 28 th International Conference on Machine Learning. Bellevue, WA, USA

  18. Lin Y, Jin R, Cai D, He X (2012) Random projection with filtering for nearly duplicate search. In: Proceedings of the twenty-sixth AAAI conference on artificial intelligence (AAAI)

  19. Ling H, Feng H, Zou F, Yan W, Lu Z (2011) A Novel Collusion Attack Strategy for Digital fingerprinting. Lect Notes Comput Sci, Digit Watermarking 6526:224–238

    Article  MATH  Google Scholar 

  20. Sakai T, Imiya A (2009) Fast spectral clustering with random projection and sampling. In: Proceedings of the 3rd international conference on machine learning and data mining (MLDM09)

  21. Stone H (1996) Analysis of attacks on image watermarks with randomized coefficients, NEC Research Institution, tech. report No. 96–045

  22. To D, Safavi-Nani R, Wang Y (2002) A 2-secure code with efficient tracing algorithm. In: Progress in Cryptology - INDOCYPT’02 Lecture Notes Computer Science, vol 2511, pp 149–162

  23. Wang ZJ, Wu M, Zhao H, Trappe W, Liu K JR (2005) Anti-collusion forensics of multimedia fingerprinting using orthogonal modulation. IEEE Trans Image Process 14(6):804–821

    Article  Google Scholar 

  24. Weiss Y, Torralba A, Fergus R (2008) Spectral hashing. In: NIPS, vol 21, pp 1753–1760

  25. Wang ZJ, Wu M, Trapper W, Liu KJR (2009) Group-oriented fingerprinting for multimeida forensics. EUPASIP J Appl Sig Process 14(11)

  26. Yan D, Huang L, Jordanm M I (2009) Fast approximate spectral clustering. In: Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining (KDD’09). ACM, New York, NY, USA, pp 907–916

  27. Zeng W, Liu B (1999) A statistical watermark detection technique without using original images for resolving right ownerships of digital images. IEEE Trans Image Process 8(11):1534C1548

  28. Zhang D, Wang J, Cai D, Lu J (2010) Self-taught hashing for fast similarity search. In: 33rd ACM SIGIR, pp 18–25

  29. Zhao H, Wu M, Wang ZJ, Liu KJR (2005) Performance of detection statistics under collusion attacks on independent multimedia fingerprints. IEEE Trans Image Process 14:646–661

    Article  Google Scholar 

  30. Zhao H, Wu M, Wang ZJ, Liu KJR (2005) Forensic analysis of nonlinear collusion attacks for multimeida fingerprinting. IEEE Trans Image Process 14(5):646–661

    Article  Google Scholar 

Download references

Acknowledgment

This work is supported by the NSF of China under Grant No. 61272409, the Fundamental Research Funds for the Central Universities(WUT: 133102002) and Wuhan Youth Science and Technology Chenguang Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cong Liu or Hefei Ling.

Appendix

Appendix

We take converting \( \sum \nolimits _{ij} W_{ij} \left \| y_{i} - y_{j} \right \| \) to t r(Y T L Y) as an example to show the transformations from (9) to (10).

$$ \begin{array}{llllll} & \quad \sum\nolimits_{ij} W_{ij} \left\| y_{i} - y_{j} \right\|^{2} \\ &= \sum\nolimits_{ij} W_{ij} (y_{i} - y_{j})^{T} (y_{i} - y_{j}) \\ &= \sum\nolimits_{ij} W_{ij} \left({y_{i}^{T}} y_{i} - {y_{i}^{T}} y_{j} - {y_{j}^{T}} y_{i} + {y_{j}^{T}} y_{j}\right) \\ &= 2 \left(\sum\nolimits_{ij} {W_{ij} {y_{i}^{T}} y_{i} } - \sum\nolimits_{ij} W_{ij} {y_{i}^{T}} y_{j} \right) \\ &= 2 \left(tr(Y D Y^{T} \right) - tr\left(Y W Y^{T} ) \right) \\ &= 2 tr\left(Y L Y^{T}\right) \end{array} \notag $$

where L = DW and \( D_{ii} = \sum \nolimits _{j} W_{ij}\). We can employ the same method transform \( \sum \nolimits _{i} {{{\left \| {{y_{i}} - \bar {y}} \right \|}^{2}}}\) to t r(Y H Y T).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Ling, H., Zou, F. et al. Local and global structure preserving hashing for fast digital fingerprint tracing. Multimed Tools Appl 74, 8003–8023 (2015). https://doi.org/10.1007/s11042-014-2035-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-014-2035-x

Keywords

Navigation