Skip to main content
Log in

Cross-Layer prioritized H.264 video packetization and error protection over noisy channels

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Video transmission over wireless channels is affected by channel-induced packet losses. Distortion due to channel errors can be alleviated by applying forward error correction. Aggregating H.264/AVC slices to form video packets with sizes adapted to their importance can also improve transmission reliability. Larger packets are more likely to be in error but smaller packets require more overhead. We present a cross-layer dynamic programming (DP) approach to minimize the expected received video distortion by jointly addressing the priority-adaptive packet formation at the application layer and rate compatible punctured convolutional (RCPC) code rate allocation at the physical layer for prioritized slices of each group of pictures (GOP). Some low priority slices are also discarded to improve protection to more important slices and meet the channel bit-rate limitations. We propose two schemes. Our first scheme carries out joint optimization for all slices of a GOP at a time. The second scheme extends our cross-layer DP-based approach to slices of each frame by predicting the expected channel bit budget per frame for live streaming. The prediction uses a generalized linear model developed over the cumulative mean squared error per frame, channel SNR, and normalized compressed frame bit budget. The parameters are determined over a video dataset that spans high, medium and low motion complexity. The predicted frame bit budget is used to derive the packet sizes and corresponding RCPC code rates for live transmission using our DP-based approach. Simulation results show that both proposed schemes significantly improve the received video quality over contemporary error protection schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control AC-19(6):716

    Article  MathSciNet  Google Scholar 

  2. Bandyopadhyay SK, Wu Z, Pandit P, Boyce JM (2006) An error concealment scheme for entire frame losses. IEEE Sarnoff Symp:1–4

  3. Chakarakesi J, Chou PA (2004) Application layer Error-Correction coding for rate-distortion optimized streaming to wireless clients. IEEE Trans Commun 52(10):1657

    Google Scholar 

  4. Chen Z, Reznik Y (2012) Analysis of video codec buffer and delay under time-varying channel. In: IEEE VCIP. pp 1–6

  5. Choi BY, Song S, Wang Y, Park EK (2009) Using RTT variability for adaptive cross-layer approach to multimedia delivery in heterogeneous networks. IEEE Trans Multimedia 11(6):1194

    Article  Google Scholar 

  6. Connie AT, Nasiopoulos P, Leung VCM, Fallah YP (2008) Video packetization techniques for enhancing H.264 video transmission over 3G networks. IEEE CCNC:800–804

  7. Choudhury S, Gibson JD (2007) Payload length and rate adaptation for multimedia communications in wireless LANs. IEEE J Sel Areas Commun 25(4):796

    Article  Google Scholar 

  8. Choudhury S, Gibson JD (2008) Throughput optimization for wireless LANs in the presence of packet error constraints. IEEE Commun Lett 12(1):11

    Article  Google Scholar 

  9. Chou PA, Miao Z (2006) Rate-distortion optimized streaming of packetized media. IEEE Trans Multimedia 8(2):390

    Article  Google Scholar 

  10. Duffield NG, Ramakrishnan KK, Reibman AR (1998) SAVE: an algorithm for smoothed adaptive video over explicit rate networks. IEEE INFOCOM:1093–1102

  11. Fallah YP, Darrell K, Avideh S, Faizal K, Nasiopoulos P (2007) A cross layer optimization mechanism to improve H.264 video transmission over WLANs. IEEE CCNC:875–879

  12. Fallah YP, Nasiopoulos P, Alnuweiri H (2008) Efficient transmission of H.264 video over multirate IEEE 802.11e WLANs. EURASIP J Wirel Commun Netw 2008:1

    Article  Google Scholar 

  13. Garibotto G, Murrieri P, Capra A, Muro SD, Petillo U, Flammini F, Esposito M, Pragliola C, Leo GD, Lengu R, Mazzino N, Paolillo A, Urso MD, Vertucci R, Narducci F, Ricciardi S, Casanova A, Fenu G, Mizio MD, Savastano M, Capua MD, Ferone A (2013) White paper on industrial applications of computer vision and pattern recognition. Image Analysis and Processing ICIAP 8157:721–730

  14. H.264/AVC reference software jm18.5. http://iphome.hhi.de/suehring/tml/download/

  15. Hagenauer J (1988) Rate-compatible punctured convolutional codes (RCPC Codes) and their Applications. IEEE Trans Commun 36(4):389

    Article  Google Scholar 

  16. Hannan EJ, Quinn BG (1979) The determination of the order of an autoregression. J Royal Stat Soc B 41(2):190

    MathSciNet  Google Scholar 

  17. Horne U, Stuhlmuller K, Link M, Girod B (1999) Robust internet video transmission based on scalable coding and unequal error protection. J Image Commun Special issue on Real-Time Video over the Internet 15(1-2):77

    Google Scholar 

  18. Huang YZ, Apostolopoulos JG (2007) A joint packet selection/omission and FEC system for streaming video. In: IEEE ICASSP, Honolulu, HI, pp I–845–I–848

  19. Jelenkovic PR, Tian J (2008) Dynamic packet fragmentation for wireless channels with failures. In: ACM MobiHoc, pp 73–82

  20. Kambhatla KKR, Kumar S, Paluri S, Cosman PC (2012) Wireless H.264 video quality enhancement through optimal prioritized packet fragmentation. IEEE Trans Multimedia 14(5):1480

    Article  Google Scholar 

  21. Kambhatla KKR, Kumar S, Cosman PC (2012) H.264/AVC video packet aggregation and unequal error protection for noisy channels. In: IEEE international conference on image processing, ICIP, Orlando, pp 1649–1652

  22. Korhonen J, Wang Y (2005) Effect of packet size on loss rate and delay in wireless links. In: IEEE WCNC, vol 3, pp 1608–1613

  23. Ksentini A, Naimi M (2006) Toward an improvement of H.264 video transmission over IEEE 802.11e through a cross layer architecture. IEEE Commun Mag 44(1):107

    Article  Google Scholar 

  24. Lakshman ARR, Tabatabai A (1992) In: IEEE INFOCOM, pp 776–785

  25. Lee CW, Yang CS, Su YC (2009) A scheme for smoothing delay sensitive traffic offered to ATM networks. In: ACM IWCMC, Leipzig, pp 1062–1066

  26. Lee CW, Yang CS, Su YC (2006) Adaptive UEP and packet size assignment for scalable video transmission over burst-error channels. EURASIP J App Signal Process 2006:1

    Google Scholar 

  27. Li F, Liu G (2009) Compressed-domain-based transmission distortion modeling for precoded H.264/AVC video. IEEE Trans Circuits Syst Video Technol 19(12):1908

    Article  Google Scholar 

  28. Li D, Sun X (2006) Nonlinear Integer Programming (International Series in Operations Research and Management Science, Springer. USA

  29. Lin TL, Cosman PC (2010) Efficient optimal RCPC code rate allocation with packet discarding for pre-encoded compressed video. IEEE Signal Process Lett 17(5):505

    Article  Google Scholar 

  30. Lin H, Wu TY, Huang CY (2011) Payload length adaptation for wireless video transmission in multicarrier systems. In: IEEE VTC, San Francisco, pp 1–5

  31. Local and Metropolitan Area Networks-Specific Requirements Part 11 (2007) Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications

  32. Luo H, Ci S, Wu D (2011) A cross-layer design for the performance improvement of real-time video transmission of secondary users over cognitive radio networks. IEEE Trans Circuits Syst Video Technol 21(8):1040

    Article  Google Scholar 

  33. McCullagh P, Nelder JA (1989) Generalized Linear Models, 2nd edn. Monographs on Statistics and Applied Probability (Chapman & Hall/CRC)

  34. Modiano E (1999) An adaptive algorithm for optimizing the packet size used in wireless ARQ. Wirel Netw J 5(4):279

    Article  Google Scholar 

  35. Paluri S, Kambhatla KKR, Kumar S, Bailey B, Cosman P (2012) Predicting slice loss distortion in H.264/AVC video for low complexity data prioritization. In: IEEE ICIP, Orlando, FL, USA, pp 689–692

  36. Pinson MH, Wolf S (2004). A new standardizationmethod for objectively measuring video quality. IEEE Trans Broadcast 50(3):312

    Article  Google Scholar 

  37. Rohc (2001) RoHC: Robust Header Compression

  38. Schier M, Welzl M (2012) Optimizing selective ARQ for H.264 live streaming: a novel method for predicting loss-impact in real time. IEEE Trans Multimedia 14(2):415

    Article  Google Scholar 

  39. Shih CH (2012) Enhancing packet-level forward error correction for streaming video in wireless networks. Int J Comput Sci Issues (IJCSI) 9(5):146

    Google Scholar 

  40. Shih CH (2010) Adaptive forward error correction combined with packet size control for wireless video. In: IEEE Sixth IIH-MSP, Darmstadt, Germany, pp 256–259

  41. Schwarz G (1978) Estimating the dimension of a model. The Ann Stat 6(2):461

    Article  Google Scholar 

  42. The R Project for Statistical Computing. http://www.r-project.org/

  43. Tsai MF, Chilamkurti N, Shieh CK (2011) An adaptive packet and block length forward error correction for video streaming over wireless networks. Springer Wireless Pers Commun 56(3):435

    Article  Google Scholar 

  44. van der Schaar M, Shankar NS (2005) Cross-layer wireless multimedia transmission: challenges, principles and new paradigms. IEEE Wireless Commun Mag 12(4):50

    Article  Google Scholar 

  45. Venables WN, Ripley BD (2002) Modern Applied Statistics with S., 4th edn. Springer

  46. Vosoughi A, Testoni V, Cosman P, Milstein L (2013) In: IEEE ICASSP. pp 2050–2054

  47. Wiegand T, Farber N, Stuhlmuller KS, Girod B (2000) Error-resilient video transmission using long-term memory motion-compensated prediction. IEEE J Sel Areas Commun 18(6):1050

    Article  Google Scholar 

  48. Wiegand T, Sullivan GJ, Bjontegaard G, Luthra A (2003) Overview of the H.264/AVC video coding standard. IEEE Trans Circuits Syst Video Technol 13(7):560

    Article  Google Scholar 

  49. Wu TY, Chuang TT, Huang CY (2011) Optimal transmission of high definition video transmission in WiMedia systems. Wirel Netw J 17(2):291

    Article  Google Scholar 

  50. Yoo T, Lavery RJ, Goldsmith A, Goodman DJ (2006) Throughput optimization using adaptive techniques. IEEE Commun Lett:1–7

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kashyap K. R. Kambhatla.

Additional information

Approved for Public Release; Distribution Unlimited: 88ABW-2014-5102, 4 Nov. 2014. This research was partially supported by awards from the U.S. Air Force Research Laboratory under contract #FA8750-08-1-0078 and #FA8750-11-1-0048. Opinions, interpretations, and conclusions are those of the authors and are not necessarily endorsed by the United States Government.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kambhatla, K.K.R., Paluri, S., Matyjas, J.D. et al. Cross-Layer prioritized H.264 video packetization and error protection over noisy channels. Multimed Tools Appl 75, 3235–3257 (2016). https://doi.org/10.1007/s11042-014-2432-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-014-2432-1

Keywords

Navigation