Skip to main content
Log in

6DoF haptic rendering using distance maps over implicit representations

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper presents a haptic rendering scheme based on distance maps over implicit surfaces. Using the successful concept of support planes and mappings, a support plane mapping formulation is used so as to generate a convex representation and efficiently perform collision detection. The proposed scheme enables, under specific assumptions, the analytical reconstruction of the rigid 3D object’s surface, using the equations of the support planes and their respective distance map. As a direct consequence, the problem of calculating the force feedback can be analytically solved using only information about the 3D object’s spatial transformation and position of the haptic interaction point. Moreover, several haptic effects are derived by the proposed mesh-free haptic rendering formulation. Experimental evaluation and computational complexity analysis demonstrates that the proposed approach can reduce significantly the computational cost when compared to existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Barbic J, James D (2009) Six-dof haptic rendering of contact between geometrically complex reduced deformable models: haptic demo. In: Proceedings of Eurohaptics, pp 393–394

  2. Barlit A, Harders M (2007) Gpu-based distance map calculation for vector field haptic rendering. In: Eurohaptics, pp 589–590

  3. Burdea G, Coiffet P (2003) Virtual reality technology. 2nd edn. Wiley-IEEE Press

  4. Chung K, Wang W (1996) Quick collision detection of polytopes in virtual environments. In: ACM symposium on virtual reality software and technology 1996, pp 1–4

  5. Coming D, Staadt O (2008) Velocity-aligned discrete oriented polytopes for dynamic collision detection. IEEE TVCG 14(1):1–12

    Google Scholar 

  6. Conti F, Barbagli K, Morris D, Sewell C (2005) Chai 3d: an open-source library for the rapid development of haptic scenes. In: IEEE World Haptics, Pisa

  7. Dobkin DP, Kirkpatrick DG (1985) A linear algorithm for determining the separation of convex polyhedra. J Algorithm 6(3):381–392

    Article  MathSciNet  MATH  Google Scholar 

  8. Ericson C (2005) Real-Time collision detection. The Morgan Kaufmann series in interactive 3D technology. Morgan Kaufmann, San Mateo

    Google Scholar 

  9. Fuhrmann A, Sobottka G, Gross C (2003) Distance fields for rapid collision detection in physically based modeling. In: Proceedings of GraphiCon 2003, pp 58–65

  10. Gottschalk S, Lin M, Manocha D (1996) OBBTree: a hierarchical structure for rapid interference detection. In: Computer graphics, ACM SIGGRAPH, pp 171–180

  11. Hubbard P (1996) Approximating polyhedra with spheres for time-critical collision detection. ACM Trans Graph 15(3):179–210

    Article  Google Scholar 

  12. Klosowski J, Held M, Mitchell J, Sowizral H, Zikan K (1998) Efficient collision detection using bounding volume hierarchies of k-DOPs. IEEE Trans Vis Comput Graph 4(1):21–36

    Article  Google Scholar 

  13. Laycock S, Day A (2007) A survey of haptic rendering techniques. Comput Graph Forum 26(1):50–65

    Article  Google Scholar 

  14. Lin M, Otaduy M (2008) Haptic rendering: foundations, algorithms and applications. p. A.K.Peters Publishing

  15. McNeelyW, Puterbaugh K, Troy J (1999) Six degree-of-freedom haptic rendering using voxel sampling. In: Proc. of ACM Siggraph, pp 401–408

  16. Moustakas K, Nikolakis G, Kostopoulos K, Tzovaras D, Strintzis M (2007) Haptic rendering of visual data for the visually impaired. IEEE Multimedia 14(1):62–72

    Article  Google Scholar 

  17. Moustakas K, Tzovaras D, Strintzis M (2007) Sq-map: efficient layered collision detection and haptic rendering. IEEE Trans Vis Comput Graph 13(1):80–93

    Article  Google Scholar 

  18. Osher S, Fedkiw R (2002) Level set methods and dynamic implicit surfaces. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  19. Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on hamilton-jacobi formulations. J Comput Phys 79(1):12–49

    Article  MathSciNet  MATH  Google Scholar 

  20. Palmerius K, Cooper M, Ynnerman A (2008) Haptic rendering of dynamic volumetric data. IEEE Trans Vis Comput Graph 14(2):263–276

    Article  Google Scholar 

  21. Petersik A, Pflesser B, Tiede U, Hohne K (2001) Haptic rendering of volumetric anatomic models at sub-voxel resolution. In: In Proceedings of Eurohaptics, Birmingham, pp 182–184

  22. Ruspini D, Kolarov K, Khatib O (1997) The haptic display of complex graphical environments. In: Computer graphics (SIGGRAPH 97 conference proceedings), pp 345–352

  23. Sethian J, Ciarlet P, Iserles A, Kohn R, Wright M (1999) Level set methods and fast marching methods : evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. Cambridge University Press, Cambridge

    Google Scholar 

  24. Srinivasan M, Basdogan C (1997) Haptics in virtual environments: taxonomy, research status and challenges. Computers and graphics, pp 393–404

  25. Teschner M, Kimmerle S, Heidelberger B, Zachmann G, Raghupathi L, Fuhrmann A, Cani MP, Faure F, Magnenat-Thalmann N, Strasser W, Volino P (2004) Collision detection for deformable objects. In: Proc. of Eurographics 2004, pp 119–135

  26. van den Bergen G (1997) Efficient collision detection of complex deformable models using AABB trees. J Graph Tools 2(4):1–13

    Article  MATH  Google Scholar 

  27. van den Bergen G (2003) Collision detection in interactive 3D environments. The Morgan Kaufmann series in interactive 3D technology. Morgan Kaufmann, San Mateo

    Google Scholar 

  28. Vogiannou A, Moustakas K, Tzovaras D, Strintzis M (2010) Enhancing bounding volumes using support plane mappings for collision detection. Comput Graph Forum 29(5):1595–1604

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Moustakas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moustakas, K. 6DoF haptic rendering using distance maps over implicit representations. Multimed Tools Appl 75, 4543–4557 (2016). https://doi.org/10.1007/s11042-015-2490-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-015-2490-z

Keywords

Navigation