Skip to main content
Log in

Complex video event detection via pairwise fusion of trajectory and multi-label hypergraphs

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The video data is rich in motion event information. Detecting complex events and analyzing the inherent high-level semantics information have been a hot topic in video analysis and understanding. Detecting complex events in the video involves detecting multiple semantic concepts, describing features of multiple moving targets and discovering the relationship between low-level features and high-level semantic concepts. It can extract semantic concept patterns from various video features and original video data, thus bridging the semantic gap. Based on the hypergraph theory, this paper proposes to construct trajectory and multi-label hypergraphs considering the features of moving targets. The two hypergraphs are fused to detect complex events. The experimental results show that in comparison with other methods including ordinary graph based method and hypergraph based multi-label semi-supervised learning method, our method achieves better average precision and average recall when detecting complex events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Assfalg J, Bertini M, Colombo C et al (2003) Semantic annotation of soccer videos: automatic highlights identification. Comput Vis Image Underst 92(2):285–305. doi:10.1016/j.cviu.2003.06.004

    Article  Google Scholar 

  2. Chen ZJ, Chen XJ, He H (2007) Moving object detection based on improved mixture gaussian models. J Image Graph 12(9):1585–1589

    Google Scholar 

  3. Chen DW, Liu R, Yuan ZM et al (2011) Research on multi-concept learning based on inter-concept relation. Comput Sci 38(4):244–248

    Google Scholar 

  4. Doulamis ND (2010) Coupled multi-object tracking and labeling for vehicle trajectory estimation and matching. Multimed Tools Appl 50:173–198

    Article  Google Scholar 

  5. Gao Y, Wang WB, Yong JH et al (2009) Dynamic video summarization using two-level redundancy detection. Multimed Tools Appl 42:233–250. doi:10.1007/s11042-008-0236-x

    Article  Google Scholar 

  6. Hakeem A, Shah M (2007) Learning, detection and representation of multi-agent events in videos. Artif Intell 171(8–9):586–605. doi:10.1016/j.artint.2007.04.002

    Article  Google Scholar 

  7. Han YH, Shao J, Wu F et al (2010) Multiple hypergraph ranking for video concept detection. J Zhejiang Univ-Sci C (Comput Electron) 11(7):525–537. doi:10.1631/jzus.C0910453

    Article  Google Scholar 

  8. Hongeng S, Navatia R, Bremond F (2004) Video-based event recognition-activity representation and probabilistic recognition methods. Comput Vis Image Underst 96:129–162. doi:10.1016/j.cviu.2004.02.005

    Article  Google Scholar 

  9. Huang YC, Liu QS, Dimitris M (2009) Video object segmentation by hypergraph Cut[C]// Proceedings of Int’l Conf. Computer Vision and Pattern Recognition (CVPR). IEEE Computer Society, Miami, pp 1738–1735

    Google Scholar 

  10. Huang CL, Shih HC, Chao CY (2006) Semantic analysis of soccer video using dynamic Bayesian network. IEEE Trans Multimed 8(4):749–760. doi:10.1109/TMM.2006.876289

    Article  Google Scholar 

  11. Jiang Y, She QQ, Li M et al (2008) A transductive multilabel text categorization approach. J Comput Res Dev 45(11):1817–1822

    Google Scholar 

  12. Kalman RE, Bucy RS (1961) New results in linear filtering and prediction theory. Trans ASME-J Basic Eng 83:95–107

    Article  MathSciNet  Google Scholar 

  13. Ke J, Zhan YZ, Chen XJ et al (2013) The retrieval of motion event by associations of temporal frequent pattern growth. Futur Gener Comput Syst 29:442–450. doi:10.1016/j.future.2011.06.004

    Article  Google Scholar 

  14. Ke J, Zhan YZ, Chen XJ (2009) The research of detect moving target algorithm pseudo invariant line moment-based[C]// Proceedings of ICIC2009,LNCS 5754. Springer, Ulsan, pp 615–624

    Google Scholar 

  15. Lan Z-Z, Bao L, Yu S-I, Liu W, Hauptmann AG (2014) Multimedia classification and event detection using double fusion. Multimed Tools Appl 71:333–347

    Article  Google Scholar 

  16. Lu HQ, Liu J (2008) Image annotation based on graph learning. Chin J Comput 31(9):1629–1639

    Article  Google Scholar 

  17. Lu H, Tan YP (2001) Sports video analysis and structuring [C]// Proceedings of the IEEE 4th Workshop on Multimedia Signal Processing. Institute of Electrical and Electronics Engineers Inc, Cannes, pp 45–50

    Google Scholar 

  18. Maggio E, Cavallaro A (2005) Hybrid particle filter and mean shift trajectoryer with adaptive transition model[C]//Proceedings of IEEE Signal Processing Society International Conference on Acoustics, Speech, and Signal Processing (ICASSP). Institute of Electrical and Electronics Engineers Inc, Philadelphia, pp 221–224. doi:10.1109/ICASSP.2005.1415381

    Google Scholar 

  19. Mezaris V, Scherp A, Jain R, Kankanhalli MS (2014) Real-life events in multimedia detection, representation, retrieval, and applications. Multimed Tools Appl 70:1–6

    Article  Google Scholar 

  20. Piciarelli C, Foresti GL (2006) On-line trajectory clustering for anomalous events detection. Pattern Recogn Lett 27(15):1835–1842. doi:10.1016/j.patrec.2006.02.004

    Article  Google Scholar 

  21. Qian X, Wang H, Liu G, Hou X (2012) HMM based soccer video event detection using enhanced mid-level semantic. Multimed Tools Appl 60:233–255

    Article  Google Scholar 

  22. Ruocco M, Ramampiaro H (2014) A scalable algorithm for extraction and clustering of event-related pictures. Multimed Tools Appl 70:55–88

    Article  Google Scholar 

  23. Suk HI, Sin BK, Lee SW (2010) Hand gesture recognition based on dynamic Bayesian network framework. Pattern Recogn 43(9):3059–3072. doi:10.1016/j.patcog.2010.03.016

    Article  MATH  Google Scholar 

  24. Talukder A, Panangadan A (2014) Extreme event detection and assimilation from multimedia sources. Multimed Tools Appl 70:237–261

    Article  Google Scholar 

  25. Voulodimos AS, Kosmopoulos DI, Doulamis ND, Varvarigou TA (2014) A top-down event-driven approach for concurrent activity recognition. Multimed Tools Appl 69:293–311

    Article  Google Scholar 

Download references

Acknowledgments

This research has partially been supported by National Natural Science Foundation of China under Grant No. 41374129, 60673190 and 61203244, College Natural Science Research of Jiangsu Province under Grant No. 14KJB520008, Senior Technical Personnel of Scientific Research Fund of Jiangsu University under Grant No. 13JDG126.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-jun Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Xj., Zhan, Yz., Ke, J. et al. Complex video event detection via pairwise fusion of trajectory and multi-label hypergraphs. Multimed Tools Appl 75, 15079–15100 (2016). https://doi.org/10.1007/s11042-015-2514-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-015-2514-8

Keywords

Navigation