Skip to main content
Log in

Expression-robust 3D face recognition based on feature-level fusion and feature-region fusion

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

3D face shape is essentially a non-rigid free-form surface, which will produce non-rigid deformation under expression variations. In terms of that problem, a promising solution named Coherent Point Drift (CPD) non-rigid registration for the non-rigid region is applied to eliminate the influence from the facial expression while guarantees 3D surface topology. In order to take full advantage of the extracted discriminative feature of the whole face under facial expression variations, the novel expression-robust 3D face recognition method using feature-level fusion and feature-region fusion is proposed. Furthermore, the Principal Component Analysis and Linear Discriminant Analysis in combination with Rotated Sparse Regression (PL-RSR) dimensionality reduction method is presented to promote the computational efficiency and provide a solution to the curse of dimensionality problem, which benefit the performance optimization. The experimental evaluation indicates that the proposed strategy has achieved the rank-1 recognition rate of 97.91 % and 96.71 % based on Face Recognition Grand Challenge (FRGC) v2.0 and Bosphorus respectively, which means the proposed approach outperforms state-of-the-art approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alyuz N, Gokberk B, Akarun L (2010) Regional registration for expression resistant 3-D face recognition. IEEE Trans Inform Forensics Sec 5(3):425–440

    Article  Google Scholar 

  2. Belhumeur PN, Hespanha JP, Kriegman DJ (1997) Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Trans Patt Anal Mach Intell 19(7):711–720

    Article  Google Scholar 

  3. Besl PJ, McKay ND (1992) A method for registration of 3-D shapes. IEEE Trans Patt Anal Mach Intell 14(2):239–256

    Article  Google Scholar 

  4. Bronstein AM, Bronstein MM, Kimmel R (2007) Expression-invariant representations of faces. IEEE Trans Image Process 16(1):188–197

    Article  MathSciNet  Google Scholar 

  5. Cai L, Da FP (2012) Nonrigid-deformation recovery for 3D face recognition using multiscale registration. Comput Graph Applic 32(3):37–45

    Article  Google Scholar 

  6. Cai L, Da FP (2012) Estimating inter-personal deformation with multi-scale modelling between expression for three-dimensional face recognition. IET Comput Vis 6:468–479

    Article  Google Scholar 

  7. Chang KI, Bowyer KW, Flynn PJ (2006) Multiple nose region matching for 3D face recognition under varying facial expression. IEEE Trans Patt Anal Mach Intell 28(10):1695–1700

    Article  Google Scholar 

  8. Chen D, Cao XD, Fen F, and Sun J (2013) Blessing of dimensionality: high-dimensional feature and its efficient compression for face verification, in: Proc Conf Comput Vis Patt Recognit. 3025–3032

  9. Daoudi M, Srivastava A, Veltkamp R (2013) 3D face modeling, analysis and recognition. Wiley, Chichester

    Book  Google Scholar 

  10. Drira H, Ben Amor B, Srivastava A, Daoudi M, Slama R (2013) 3D face recognition under expressions, occlusions, and pose variations. IEEE Trans Patt Anal Mach Intell 35(9):2270–2283

    Article  Google Scholar 

  11. Faltemier TC, Bowyer KW, Flynn PJ (2008) A region ensemble for 3-D face recognition. IEEE Trans Inform Forensics Sec 3(1):62–72

    Article  Google Scholar 

  12. Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models via coordinate descent. J Stat Softw 33:1–22

    Article  Google Scholar 

  13. Gökberk B, Salah AA, Alyüz N, Akarun L (2009) 3D face recognition: technology and applications, Handbook of Remote Biometrics. 217–246

  14. Gu XF, Gortler SJ, Hoppe H (2002) Geometry images. ACM Trans Graph (TOG) 21(3):355–361

    Article  Google Scholar 

  15. Gupta P, Zaroliagis C, Maiti S, Sangwan D, Raheja JL (2014) Expression-invariant 3D face recognition using K-SVD method, applied algorithms. 266–276

  16. Hiremath PS, Hiremath M (2014) 3D face recognition based on radon transform, PCA, LDA using KNN and SVM. Int J Comput Network Inform Sec 7:36–43

    Google Scholar 

  17. Huttenlocher DP, Klanderman GA, Rucklidge WJ (1993) Comparing images using the Hausdorff distance. IEEE Trans Patt Anal Mach Intell 15(9):850–863

    Article  Google Scholar 

  18. Jolliffe IT (1986) Principal component analysis, 1st edn. Springer, New York

    Book  MATH  Google Scholar 

  19. Kakadiaris IA, Passalis G, Toderici G, Murtuza MN, Lu Y, Karampatziakis N, Theoharis T (2007) Three-dimensional face recognition in the presence of facial expressions: An annotated deformable model approach. IEEE Trans Patt Anal Mach Intell 29(4):640–649

    Article  Google Scholar 

  20. Lee YH, Shim JC (2004) Curvature based human face recognition using depth weighted hausdorff distance, in: Proceed Int Conf Imag Process. 1429–1432

  21. Lei YJ, Bennamoun M, Hayat M, Guo YL (2014) An efficient 3D face recognition approach using local geometrical signatures. Pattern Recogn 47(2):509–524

    Article  Google Scholar 

  22. Lei YJ, Bennamoun M, El-Sallam AA (2013) An efficient 3D face recognition approach based on the fusion of novel local low-level features. Pattern Recogn 46(1):24–37

    Article  Google Scholar 

  23. Li XL, Da FP (2012) Efficient 3D face recognition handling facial expression and hair occlusion. Image Vis Comput 30(9):668–679

    Article  Google Scholar 

  24. Li HB et al (2014) Expression-robust 3D face recognition via weighted sparse representation of multi-scale and multi-component local normal patterns. Neurocomputing 133:179–193

    Article  Google Scholar 

  25. Lin WY, Chen MY (2014) A novel framework for automatic 3D face recognition using quality assessment. Multimed Tools Applic 68:877–893

    Article  Google Scholar 

  26. Liu YH (2004) Improving ICP with easy implementation for free-form surface matching. Pattern Recogn 37(2):211–226

    Article  MathSciNet  MATH  Google Scholar 

  27. Lu XG, Jain AK, Colbry D (2006) Matching 2.5D face scans to 3D models. IEEE Trans Patt Anal Mach Intell 28(1):31–43

    Article  Google Scholar 

  28. Mallat SG (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Patt Anal Mach Intell 11(7):674–693

    Article  MATH  Google Scholar 

  29. Mian AS, Bennamoun M, Owens R (2007) An efficient multimodal 2D-3D hybrid approach to automatic face recognition. IEEE Trans Patt Anal Mach Intell 29(11):1927–1943

    Article  Google Scholar 

  30. Mian AS, Bennamoun M, Owens R (2008) Keypoint detection and local feature matching for textured 3D Face recognition. Int J Comput Vis 79:1–12

    Article  Google Scholar 

  31. Mohammadzade H, Hatzinakos D (2013) Iterative closest normal point for 3D face recognition. IEEE Trans Patt Anal Mach Intell 35(2):381–397

    Article  Google Scholar 

  32. Myronenko A, Song X (2010) Point set registration: coherent point drift. IEEE Trans PattAnal Mach Intell 32(12):2262–2275

    Article  Google Scholar 

  33. Phillips PJ, Flynn PJ, Scruggs T, Bowyer KW (2006) Overview of the face recognition grand challenge, in: Proc Conf Comput Vis Patt Recognit. 947–954

  34. Queirolo CC et al (2010) 3D face recognition using simulated annealing and the surface interpenetration measure. IEEE Trans Patt Anal Mach Intell 32(2):206–219

    Article  Google Scholar 

  35. Ritter J (2002) Wavelet based image compression using FPGAs. Martin-Luther-University Halle, Wittenberg

    Google Scholar 

  36. Russ TD, Koch MW, Little CQ (2005) A 2D range Hausdorff approach for 3D face recognition, in: Proc IEEE Comput Soc Conf Comput Vis Patt Recognit-Workshops. 169–176

  37. Savran A. et al (2008) Bosphorus database for 3D face analysis, biometrics and identity management. 47–56

  38. Smeets D, Keustermans J, Vandermeulen D, Suetens P (2013) meshSIFT: Local surface features for 3D face recognition under expression variations and partial data. Comput Vis Image Underst 117(2):158–169

    Article  Google Scholar 

  39. Turk MA, Pentland AP (1991) Face recognition using eigenfaces, in: Proc Conf Comput Vis Patt Recognit. 586–591

  40. Wang XQ, Ruan QQ, Ming Y (2010) 3D face recognition using corresponding point direction measure and depth local features, in: Proc 10th Int Conf Signal Process. 86–89

  41. Yi J, Wang YZ, Ruan QQ, Wang XQ (2011) A new scheme for 3D face recognition based on 2D Gabor Wavelet Transform plus LBP, in: Proc 6th Int Conf Comput Sci Educ. 860–865

  42. Yue M (2013) Rigid-area orthogonal spectral regression for efficient 3D face recognition. Neurocomputing 129:445–457

    Google Scholar 

  43. Zhang LY, Razdan A, Farin G, Femiani J, Bae M, Lockwood C (2006) 3D face authentication and recognition based on bilateral symmetry analysis. Vis Comput 22(1):43–55

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the editorial office and five anonymous reviewers who gave valuable comments and helpful suggestions which greatly improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feipeng Da.

Additional information

This research is supported by National Natural Science Foundation of China (No. 51175081, No. 51475092, No. 61405034), Doctoral Fund of Ministry of Education of China (No. 20130092110027).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, X., Da, F. & Shao, H. Expression-robust 3D face recognition based on feature-level fusion and feature-region fusion. Multimed Tools Appl 76, 13–31 (2017). https://doi.org/10.1007/s11042-015-3012-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-015-3012-8

Keywords

Navigation