Skip to main content
Log in

Improved local histogram equalization with gradient-based weighting process for edge preservation

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper presents a novel local histogram equalization by combining the transformation functions of the non-overlapped sub-images based on the gradient information for edge preservation and better visualization. To ameliorate the problems of the over- and under-enhancement produced by conventional local histogram equalization, the bilateral Bezier curve-based histogram modification strategy is first employed to modify the significant and insufficient changes of each cumulative distribution in each sub-image. Yet, the gradient information has not been considered, and the cumulative distribution of some enhanced sub-images are still significant or insufficient because of the over- and under-enhancement, respectively. Therefore, the key insight of the proposed method is that the transformation functions of the partitioned sub-images will be weighed and combined based on the proportion of gradients to preserve the image texture. In addition, the input image is separated into the non-overlapped sub-images for reducing the time complexity. Based on the eight representative test images and mean opinion score, the experimental results demonstrate that the proposed method is quite competitive with four state-of-the-art histogram equalization methods in the literature. Furthermore, according to the subjective evaluation, it is observed that the proposed method can also apply to the practical applications and achieve good visual quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Celebi AT, Duvar R, Urhan O (2015) Fuzzy fusion based high dynamic range imaging using adaptive histogram separation. IEEE Trans Consum Electron 61 (1):119–127

    Article  Google Scholar 

  2. Celik T (2014) Spatial entropy-based global and local image contrast enhancement. IEEE Trans Image Process 23(12):5298–5308

    Article  MathSciNet  Google Scholar 

  3. Celik T, Tjahjadi T (2011) Contextual and variational contrast enhancement. IEEE Trans Image Process 20(12):3431–3441

    Article  MathSciNet  Google Scholar 

  4. Chen SD, Ramli AR (2003) Contrast enhancement using recursive mean-separate histogram equalization for scalable brightness preservation. IEEE Trans Consum Electron 49(4):1301–1309

    Article  Google Scholar 

  5. Chen SD, Ramli AR (2003) Minimum mean brightness error bi-histogram equalization in contrast enhancement. IEEE Trans Consum Electron 49(4):1310–1319

    Article  Google Scholar 

  6. Cheng FC, Huang SC (2013) Efficient histogram modification using bilateral bezier curve for the contrast enhancement. J Disp Technol 9(1):44–50

    Article  Google Scholar 

  7. Choi HI, Rhee PK (1999) Head gesture recognition using HMMs. Expert Syst Appl 17(3):213– 221

    Article  Google Scholar 

  8. De la Torre A, Peinado AM, Segura JC, Perez-Cordoba JL, Benitez MC, Rubio AJ (2005) Histogram equalization of speech representation for robust speech recognition. IEEE Transactions on Speech and Audio Processing 13(3):355–366

    Article  Google Scholar 

  9. Eramian M, Mould D (2005) Histogram equalization using neighborhood metrics. In: Proceedings of the 2nd Canadian conference on computer and robot vision, pp 397–404

  10. Franco A, Nanni L (2009) Fusion of classifiers for illumination robust face recognition. Expert Syst Appl 36(5):8946–8954

    Article  Google Scholar 

  11. Ghanekar U, Singh AK, Pandey R (2010) A contrast enhancement-based filter for removal of random valued impulse noise. IEEE Signal Process Lett 17(1):47–50

    Article  Google Scholar 

  12. Gonzalez RC, Woods RE (2001) Digital image processing, 2nd edn. Addison-Wesley Longman, Boston, MA

    Google Scholar 

  13. Huang SC, Cheng FC, Chiu YS (2013) Efficient contrast enhancement using adaptive gamma correction with weighting distribution. IEEE Trans Image Process 22 (3):1032–1041

    Article  MathSciNet  Google Scholar 

  14. Kang MS, Kim BJ, Sohn KH (2009) CIECAM02-based tone mapping technique for color image contrast enhancement. Opt Eng 48(8):087001

  15. Kao WC, Ye JA, Chu MI, Su CY (2009) Image quality improvement for electrophoretic displays by combining contrast enhancement and halftoning techniques. IEEE Trans Consum Electron 55(1): 15–19

    Article  Google Scholar 

  16. Kim M, Chung M (2008) Recursively separated and weighted histogram equalization for brightness preservation and contrast enhancement. IEEE Trans Consum Electron 54(3):1389–1397

    Article  Google Scholar 

  17. Kim JY, Kim LS, Hwang SH (2001) An advanced contrast enhancement using partially overlapped sub-block histogram equalization. IEEE Trans Circuits Syst Video Technol 11(4):475– 484

    Article  Google Scholar 

  18. Kim YT (1997) Contrast enhancement using brightness preserving bi-histogram equalization. IEEE Trans Consum Electron 43(1):1–8

    Article  Google Scholar 

  19. KODAK Test Images Database. (Online) http://r0k.us/graphics/kodak/

  20. Lamberti F, Montrucchio B, Sanna A (2006) CMBFHE: a novel contrast enhancement technique based on cascaded multistep binomial filtering histogram equalization. IEEE Trans Consum Electron 52(3):966–974

    Article  Google Scholar 

  21. Lee CW, Lee C, Kim CS (2013) Contrast enhancement based on layered difference representation of 2D histograms. IEEE Trans Image Process 22(12):5372–5384

    Article  Google Scholar 

  22. Nikolova M, Steidl G (2014) Fast hue and range preserving histogram specification: theory and new algorithms for color image enhancement. IEEE Trans Image Process 23(9):40874100

    Article  MathSciNet  Google Scholar 

  23. Panetta KA, Wharton EJ, Agaian SS (2008) Human visual system-based image enhancement and logarithmic contrast measure. IEEE Trans Syst Man Cybern B Cybern 38(1):174–188

    Article  Google Scholar 

  24. Pei SC, Zeng YC, Chang CH (2004) Virtual restoration of ancient Chinese paintings using color contrast enhancement and lacuna texture synthesis. IEEE Trans Image Process 13(3):416–429

    Article  Google Scholar 

  25. Sakellaropoulos P, Costaridou L, Panayiotakis G (2003) A wavelet-based spatially adaptive method for mammographic contrast enhancement. Phys Med Biol 48(6):787

    Article  Google Scholar 

  26. Shin JY, Park RH (2015) Histogram-based locality-preserving contrast enhancement. IEEE Signal Process Lett 22(9):1293–1296

    Article  Google Scholar 

  27. Sim KS, Tso CP, Tan YY (2007) Recursive sub-image histogram equalization applied to gray scale images. Pattern Recogn Lett 28(10):1209–1221

    Article  Google Scholar 

  28. Tsai PS, Liang CK, Huang TH, Chen H-H (2009) Image enhancement for backlight-scaled TFT-LCD displays. IEEE Trans Circuits Syst Video Technol 19 (4):574–583

    Article  Google Scholar 

  29. Wahab A, Chin SH, Tan EC (1998) Novel approach to automated fingerprint recognition. IEE Proceedings on Vision, Image and Signal Processing 145(3):160–166

    Article  Google Scholar 

  30. Wang SH, Zheng J, Hu HM, Li B (2013) Naturalness preserved enhancement algorithm for non-uniform illumination images. IEEE Trans Image Process 22(9):3538–3548

    Article  Google Scholar 

  31. Wang Y, Chen Q, Zhang BM (1999) Image enhancement based on equal area dualistic sub-image histogram equalization method. IEEE Trans Consum Electron 45(1):68–75

    Article  Google Scholar 

  32. Xu HT, Jiao SH, Zhai GT, Wu XL, Yang XK (2013) Generalized equalization model for image enhancement. IEEE Trans Multimedia 16(1):68–82

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Yuan Yao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, YR., Tsai, PC., Yao, CY. et al. Improved local histogram equalization with gradient-based weighting process for edge preservation. Multimed Tools Appl 76, 1585–1613 (2017). https://doi.org/10.1007/s11042-015-3147-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-015-3147-7

Keywords

Navigation