Skip to main content
Log in

Robust image transmission over powerline channel with impulse noise

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper addresses the robust image transmission over powerline communication (PLC) channel in the presence of impulse noise. Under this framework, an adaptive noise clipping-based hybrid progressive median filter (ANC-HPMF), which is a combination of hybrid progressive median filter, noise clipping technique, image compression algorithm and coded OFDM modulation is designed to ensure image transmission over the PLC channel. For this purpose, image compression and turbo codes algorithms are inserted before image transmission in order to reduce the size of the transmitted data, and, therefore, save a significant amount of the PLC channel for forward error correction. The adaptive noise clipping method using neighboring coefficients is designed at the receiver side as a first stage. It is based on an improved estimation of noise threshold from the standard deviation of the noise and the peak value of the received noisy image. To enhance the performance of the proposed system, a new form of median filter is applied to the received image as a second stage of impulse noise reduction. By combining the noise clipping and the new median filtering, the proposed technique showed high robustness for the reduction of impulse noise even under high impulse level conditions while maintaining good visual quality of the images by preserving the edges. The performances of the proposed technique were compared with other well-known methods dedicated for impulse noise reduction, and showed much superior performance against the impulse noise generated over the PLC channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Alsusa E, Rabie KM (2013) Dynamic peak-based threshold estimation method for mitigating impulse noise in power-line communication systems. IEEE Trans Power Delivery 28(4):2201–2208

    Article  Google Scholar 

  2. Anatory J, Theethayi N (2010) Broadband Power-line Communications Systems: Theory & Applications. WIT Press, Southampton, Boston

    Google Scholar 

  3. Andreadou N, Pavlidou FN (2009) PLC Channel: impulse noise modelling and its performance evaluation under different array coding schemes. IEEE Trans Commun 24(2):585–595

    Google Scholar 

  4. Andreadou N, Pavlidou F (2010) Mitigation of impulse noise effect on the PLC channel with QC-LDPC codes as the outer coding scheme. IEEE Trans Power Deliv 25 (3):1440–1449

    Article  Google Scholar 

  5. Andreadou N, Pavlidou FN (2010) Modeling the noise on the OFDM power-line communications system. IEEE Trans Power Deliv 25(1):150–157

    Article  Google Scholar 

  6. Amirshahi P, Navidpour SM, Kavehrad M (2006) Performance analysis of uncoded and coded OFDM broadband transmission over low voltage power-line channels with impulse noise. IEEE Trans Power Deliv 21(4):1927–1934

    Article  Google Scholar 

  7. Balbuena-Campuzano CA (2014) Performance of HSR and QPP-based interleavers for turbo coding on power line communication systems. Signal Image and Video Process 8(4):615–624

    Article  Google Scholar 

  8. Brahimi T, Melit A, Khelifi F (2009) An improved SPIHT algorithm for lossless image coding. Digit Signal Proc 19(2):220–228

    Article  Google Scholar 

  9. Berrou C, Glavieux A, Thitimajshima P (1993) Near shannon limit error correction coding: Turbo codes. In: Proceedings IEEE International Conference Communication, pp 1064–1070

  10. Canete FJ, Cortés JA, Díez L, Entrambasaguas JT (2011) A channel model proposal for indoor power line communications. IEEE Commun Mag 49(12):166–174

    Article  Google Scholar 

  11. Cortés JA, Díez L, Cañete FJ, Sánchez-Martínez JJ (2010) Analysis of the indoor broadband power-line noise scenario. IEEE Trans Electromagn Compat 52(4):849–858

    Article  Google Scholar 

  12. Crouse MS, Nowak RD, Baraniuk RG (1998) Wavelet-based signal processing using hidden Markov models. IEEE Trans Signal Proc 46(4):886–902

    Article  MathSciNet  Google Scholar 

  13. Degardin V, Lienard M, Zeddam A, Gauthier F (2002) Classification and characterization of impulse noise on indoor powerline used for data communications. IEEE Trans Consum Electron 48(4):913–918

    Article  Google Scholar 

  14. Donoho DL, Johnstone IM (1995) Denoising by soft thresholding. IEEE Trans Inf Theory 41(3):613–627

    Article  MATH  Google Scholar 

  15. Ferreira HC, Lampe L, Newbury J, Swart TG (2010) Power Line Communications: Theory and Applications for Narrowband and Broadband Communications over Power Lines:2010

  16. Guerrieri L, Bisaglia P, Dell’ Amico G, Guerrini E (2007) Performance of the turbo coded HomePlug AV system over power-line channels. In: Proceedings of the IEEE International Symposium on Power Line Communications and Its Applications (ISPLC), pp 138–143

  17. Guzel T, Ustünel E, Çelebi HB, Deliç H, Mihçak K (2011) Noise modeling and OFDM receiver design in power-line communication. IEEE Trans Power Deliv 26(4):2735–2742

    Article  Google Scholar 

  18. Himeur Y, Boukabou A (2014) Noise mitigation over powerline communication using LDPC-convolutional code and fusion of mean and median filters. In: Proceedings the 11th International Conference on Signal Proceeding and Multimedia Application, vol 2014, Vienna, Austria, pp 5–13

  19. Himeur Y, Boukabou A (2015) An adaptive recursive noise compensator for impulsive noise mitigation over OFDM power line communication. AEÜ - International Journal of Electronics and Communications, doi:10.1016/j.aeue.2015.08.008

  20. Himeur Y, Boukabou A (2015) OFDM-based power-line communication enhancement using a turbo coded adaptive impulsive noise compensator. Telecommunication systems, doi:10.1007/s11235-015-0087-5

  21. Hussain A, Bhatti SM, Jaffar MA (2012) Fuzzy based impulse noise reduction method. Multimedia Tools Appl 60(3):551–571

    Article  Google Scholar 

  22. Hwang H, Haddad R (1995) Adaptive median filters: new algorithms and results. IEEE Trans Image Proc 4(4):499–502

    Article  Google Scholar 

  23. Jiang J, Guo J, Fan W, Qingwei C (2010) An improved adaptive wavelet denoising method based on neighboring coefficients. In: Proceedings of The 8th World Congress on International Control and Automation, vol 2010, Jinan, China, pp 2894–2898

  24. Katayama M, Yamazato T, Okada H (2006) A mathematical model of noise in narrowband powerline communication systems. IEEE J Sel Areas Commun 24 (7):1267–1276

    Article  Google Scholar 

  25. MacKay DJC, Postol MS (2003) Weaknesses of Margulis and Ramanujan-Margulis low-density parity-check codes. Electron Notes Theor Comput Sci 71:97–104

    Article  MATH  Google Scholar 

  26. Middleton D (1977) Statistical-physical model of electromagnetic interference. IEEE Trans Electromagn Compat 19(3):106–126

    Article  Google Scholar 

  27. Nassar M, Lin J, Mortazavi Y, Dabak A, Kim IH, Evans BL (2012) Local utility powerline communications in the 3-500 kHz band: channel impairments, noise, and standards. IEEE Sig Proc Mag 29(5):116–127

    Article  Google Scholar 

  28. Nikolova Z, Poulkov V, Iliev G, Egiazarian K (2010) New adaptive complex IIR filters and their application in OFDM systems. Signal Image Video Process 4(2):197–207

    Article  Google Scholar 

  29. Nouvel F, Tanguy P (2009) What is about future high speed power line communication systems for in-vehicles networks?. In: Proceedings of the 7th International Conference on Information Communications and Signal Processing (ICICS), pp 1–6

  30. Pighi R, Franceschini M, Ferrari G, Raheli R (2006) Fundamental Performance Limits for PLC Systems Impaired by Impulse Noise. In: Proceedings of the IEEE International Symposium on Power Line Communication and its Application, pp 277–282

  31. Pinchas M, Bobrovsky BZ (2010) Analytic threshold calculation of frequency estimation for OFDM communication. Signal Image Video Process 4(2):187–195

    Article  MATH  Google Scholar 

  32. Robertson P, Hoeher P, Villebrun E (1997) Optimal and sub-optimal maximum a posteriori algorithms suitable for turbo decoding. European Trans Telecommun 8 (2):119–125

    Article  Google Scholar 

  33. Sendur L, Selesnick IW (2002) Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency. IEEE Trans Signal Proc 50(11):2744–2756

    Article  Google Scholar 

  34. Shebl S, Soliman NF, Elfishawy NA, Abou-El-Azmd AE, Alshebeili SA, Abdelsamie FE (2013) Performance enhancement of powerline communication systems with efficient low density parity-checkcodes, noise removal, equalization, and chaotic interleaving. Digital Signal Proc 23(6):1933–1944

    Article  Google Scholar 

  35. Song D, Cao L, Chen CW (2008) Robust multiple description image coding over wireless networks based on wavelet tree coding, error resilient entropy coding, and error concealment. J Vis Commun Image R 19(5):311–319

    Article  Google Scholar 

  36. Srinivasan KS, Ebenezer D (2007) A new fast and efficient decision-based algorithm for removal of high-density impulse noises. IEEE Signal Proc Lett 14(3):189–192

    Article  Google Scholar 

  37. Sripimanwat K (2005) Turbo Code Applications: a Journey from a Paper to realization. Springer

  38. Tonello AM, Siohan P, Zeddam A, Mongaboure X (2008) Challenges for 1 Gbps power line communications in home networks, Communications. In: Proceedings of the IEEE 19th International Symposium on Personal, Indoor and Mobile Radio (PIMRC), pp 1–6

  39. Wang Z, Zhang D (1999) Progressive switching median filter for the removal of impulse noise from highly corrupted images. IEEE Trans Circ Syst 46(1):78–80

    Article  MathSciNet  Google Scholar 

  40. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: From error measurement to structural similarity. IEEE Trans Image Process 13(4):600–612

    Article  Google Scholar 

  41. Woodard JP, Hanzo L (2000) Comparative study of turbo decoding techniques: An overview. IEEE Trans Veh Technol 49(6):2208–2233

    Article  Google Scholar 

  42. Yang Y, Wei Y (2012) Neighboring coefficients preservation for signal denoising. Circ Syst Signal Proc 31(2):827–832

    Article  MathSciNet  Google Scholar 

  43. Yin SF, Cao LC, Ling YS, Jin GF (2011) Image denoising with anisotropic bivariate shrinkage. Signal Proc 91(8):2078–2090

    Article  MATH  Google Scholar 

  44. Zhidkov VS (2008) Analysis and Comparison of several simple impulsive noise mitigation schemes for OFDM receivers. IEEE Trans Commun 56(1):5–9

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the editor and the anonymous referees who kindly reviewed this paper and provided valuable suggestions and comments. This project was financially supported by the DGRSDT (Direction Générale de la Recherche Scientifique et du Développement Technologique) of Algeria (PNR 13/u18/4368).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yassine Himeur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Himeur, Y., Boukabou, A. Robust image transmission over powerline channel with impulse noise. Multimed Tools Appl 76, 2813–2835 (2017). https://doi.org/10.1007/s11042-015-3216-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-015-3216-y

Keywords

Navigation