Skip to main content
Log in

Tracking in multimedia data via robust reweighted local multi-task sparse representation for transportation surveillance

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

It is of great importance in smart transportation surveillance to track object reliably from multimedia streaming data. Sparse representation based target tracking methods often suffer from tracking failure when target is under occlusions, pose changes or illumination changes conditions. In this paper, we propose a novel robust reweighted local multi-task sparse tracking algorithm. In the algorithm, local patches of all candidate targets are represented as a linear combination of the corresponding local patches from the template dictionary. Furthermore, in order to efficiently capture the frequently emerging outlier tasks, we decompose the sparse coefficient matrix to two collaborative matrices to make sure that the same type of particles share the same sparse structure. Observing that the edge of the candidate object contains background information, this paper gives a lower weight coefficient to the reconstruction error regularization located in the edge of the local patches than the middle local patches. Experimental evaluations on challenging sequences demonstrate the effectiveness, accuracy and robustness of our proposed algorithm in comparison with state-of-the-art algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adam A, Rivlin E, Shimshoni I (2006) Robust fragments-based tracking using the integral histogram[C]. IEEE Conf Comput Vis Pattern Recognit 2006(1):798–805

    Google Scholar 

  2. Ali NH, Hassan GM (2014) Kalman filter tracking[J]. Int J Comput Appl89(9)

  3. Avidan S (2004) Support vector tracking[J]. IEEE Trans Pattern Anal Mach Intell 26(8):1064–1072

    Article  Google Scholar 

  4. Avidan S (2007) Ensemble tracking[J]. IEEE Trans Pattern Anal Mach Intell 29(2):261–271

    Article  Google Scholar 

  5. Babenko B, Yang M H, Belongie S (2009) Visual tracking with online multiple instance learning[C]. Comput Vis Pattern Recogn

  6. Bai S, Liu R, Su Z et al (2014) Incremental robust local dictionary learning for visual tracking[C]. IEEE Int Conf Multimedia Expo 2014:1–6

    Google Scholar 

  7. Bai Y, Tang M (2014) Object tracking via robust multitask sparse representation[J]. IEEE Signal Process Lett 21(8):909–913

    Article  Google Scholar 

  8. Bao C, Wu Y, Ling H et al (2012) Real time robust l1 tracker using accelerated proximal gradient approach[C]. IEEE Conf Comput Vis Pattern Recognit 2012:1830–1837

    Google Scholar 

  9. Benfold B, Reid I (2011) Stable multi-target tracking in real-time surveillance video[C]. IEEE Conf Comput Vis Pattern Recognit 2011:3457–3464

    Google Scholar 

  10. Black MJ, Jepson AD (1998) Eigentracking: robust matching and tracking of articulated objects using a view-based representation[J]. Int J Comput Vis 26(1):63–84

    Article  Google Scholar 

  11. Bo C, Zhang J, He J et al (2016) Online object tracking via bounded error distance[J]. Neurocomputing 171:1175–1184

    Article  Google Scholar 

  12. Bucak SS, Gunsel B (2009) Incremental subspace learning via non-negative matrix factorization[J]. Pattern Recogn 42(5):788–797

    Article  MATH  Google Scholar 

  13. Chen X, Pan W, Kwok JT et al (2009) Accelerated gradient method for multi-task sparse learning problem[C]. Data Min. ICDM’09. Ninth IEEE Int Conf IEEE 746–751

  14. Chen Y, Yang X, Zhong B et al (2015) CNNTracker: online discriminative object tracking via deep convolutional neural network[J]. Appl Soft Comput

  15. Comaniciu D, Ramesh V, Meer P (2003) Kernel-based object tracking[J]. IEEE Trans Pattern Anal Mach Intell 25(5):564–577

    Article  Google Scholar 

  16. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection[C]. IEEE Conf Comput Vision Pattern Recogn Comput Soc 2005(1):886–893

    Google Scholar 

  17. Fan J, Shen X, Wu Y (2012) Scribble tracker: a matting-based approach for robust tracking[J]. IEEE Trans Pattern Anal Mach Intell 34(8):1633–1644

    Article  Google Scholar 

  18. Fu C, Zhang P, Jiang J et al (2015) A Bayesian approach for sleep and wake classification based on dynamic time warping method[J]. Multimedia Tool Appl 1–20

  19. Gong P, Ye J, Zhang C () 2012Robust multi-task feature learning[C]. Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM 895–903

  20. Grabner H, Grabner M, Bischof H (2006) Real-time tracking via on-line boosting[C]. BMVC 1(5):6

    Google Scholar 

  21. Guo C, Guo Q, Jin M, Lv Z (2015) Dynamic systems based on preference graph and distance [J]. Discrete Contin Dyn Syst Ser S 8(6):1139–1154

    Article  MathSciNet  MATH  Google Scholar 

  22. Guo C, Liu X, Jin M et al (2015) The research on optimization of auto supply chain network robust model under macroeconomic fluctuations[J]. Chaos Solitons Fractals

  23. Hare S, Saffari A, Torr PHS (2011) Struck: structured output tracking with kernels[C]. IEEE Int Conf Comput Vis 2011:263–270

    Google Scholar 

  24. He L, Bo Y, Zhao G (2014) Multifeatures based compressive sensing tracking[J]. Math Probl Eng

  25. He L, Bo Y, Zhao G (2015) Accelerated multi-feature based compressive sensing tracking[J]. Infrared Phys Technol 71:424–431

    Article  Google Scholar 

  26. Hong Z, Mei X, Prokhorov D et al (2013) Tracking via robust multi-task multi-view joint sparse representation[C]. IEEE Int Conf Comput Vis 2013:649–656

    Google Scholar 

  27. Hsieh JW, Yu SH, Chen YS et al (2006) Automatic traffic surveillance system for vehicle tracking and classification[J]. IEEE Trans Intell Transp Syst 7(2):175–187

    Article  Google Scholar 

  28. Hua G, Wu Y (2006) Measurement integration under inconsistency for robust tracking[C]. IEEE Conf Comput Vis Pattern Recognit 2006(1):650–657

    Google Scholar 

  29. Huang L, Ma B (2015) Tensor pooling for online visual tracking[C]. EEE Int Conf Multimedia Expo 2015:1–6

    Google Scholar 

  30. Jiang N, Liu W, Wu Y (2011) Adaptive discriminative metric differential tracking[C]. IEEE Conf Comput Vis Pattern Recognit 2011:1161–1168

    Google Scholar 

  31. Jiang D, Wang Y, Yao C et al (2015) An effective dynamic spectrum access algorithm for multi-hop cognitive wireless networks. Comput Netw 84(19):1–16

    Article  Google Scholar 

  32. Jiang D, Xu Z, Chen Z et al (2011) Joint time-frequency sparse estimation of large-scale network traffic. Comput Netw 55(10):3533–3547

    Article  Google Scholar 

  33. D. Jiang, Z. Xu, W. Li et al (2014) Topology control-based collaborative multicast routing algorithm with minimum energy consumption. Int J Commun Syst. online available

  34. Jiang D, Xu Z, Li W et al (2015) Network coding-based energy-efficient multicast routing algorithm for multi-hop wireless networks. J Syst Softw 104:152–165

    Article  Google Scholar 

  35. Jiang D, Xu Z, Liu J et al (2015) An optimization-based robust routing algorithm to energy-efficient networks for cloud computing. Telecommun Syst. online available

  36. Jiang D, Xu Z, Wang W et al (2015) A collaborative multi-hop routing algorithm for maximum achievable rate. J Netw Comput Appl 57(2015):182–191

    Article  Google Scholar 

  37. Jiang D, Xu Z, Xu H et al (2011) An approximation method of origin–destination flow traffic from link load counts. Comput Electr Eng 37(6):1106–1121

    Article  MathSciNet  Google Scholar 

  38. Jiang D, Xu Z, Zhang P et al (2014) A transform domain-based anomaly detection approach to network-wide traffic. J Netw Comput Appl 40(2):292–306

    Article  Google Scholar 

  39. Jiang D, Xu Z, Xu H (2015) A novel hybrid prediction algorithm to network traffic. Ann Telecommun 70(9):427–439

    Article  Google Scholar 

  40. Jiang D, Yao C, Xu Z et al (2015) Multi-scale anomaly detection for high-speed network traffic. Trans Emerg Telecommun Technol 26(3):308–317

    Article  Google Scholar 

  41. Jiang D, Zhao Z, Xu Z et al (2014) How to reconstruct end-to-end traffic based on time-frequency analysis and artificial neural network. AEU Int J Electron Commun 68(10):915–925

    Article  Google Scholar 

  42. Kalal Z, Matas J, Mikolajczyk K (2010) Pn learning: bootstrapping binary classifiers by structural constraints[C]. IEEE Conf Comput Vis Pattern Recognit 2010:49–56

    Google Scholar 

  43. Kim H, Paik J (2014) Low-rank representation-based object tracking using multitask feature learning with joint sparsity[C]. Abst Appl Anal. Hindawi Publishing Corporation

  44. Kwon J, Lee KM (2010) Visual tracking decomposition[C]. IEEE Conf Comput Vis Pattern Recognit 2010:1269–1276

    Google Scholar 

  45. Li X, Hu W, Shen C et al (2013) A survey of appearance models in visual object tracking[J]. ACM Trans Intell Syst Technol 4(4):58

    Article  Google Scholar 

  46. Li F, Lu H, Wang D et al (2015) Dual group structured tracking[J]

  47. Li H, Shen C, Shi Q (2011) Real-time visual tracking using compressive sensing[C]. IEEE Conf Comput Vis Pattern Recognit 2011:1305–1312

    Google Scholar 

  48. Liu J, Ji S, Ye J (2009) Multi-task feature learning via efficient l 2, 1-norm minimization[C]. Proceedings of the twenty-fifth conference on uncertainty in artificial intelligence. AUAI Press 339–348

  49. Liu B, Yang L, Huang J et al (2010) Robust and fast collaborative tracking with two stage sparse optimization[M]//Comput Vis–ECCV 2010. Springer Berlin Heidelberg 624–637

  50. Liu Y, Zhang H, Su Z et al (2014) Visual tracking with multi-level dictionary learning[C]. Digital home (ICDH). 5th Int Conf IEEE 8–13

  51. Lowe DG (2004) Distinctive image features from scale-invariant keypoints[J]. Int J Comput Vis 60(2):91–110, SIFT

    Article  Google Scholar 

  52. Lu Y, Wang L, Hartley R et al (2011) Compressive evaluation in human motion tracking[M]. Computer Vision–ACCV 2010. Springer Berlin Heidelberg 177–188

  53. Lv Z, Halawani A, Fen S et al (2015) Touch-less interactive augmented reality game on vision based wearable device[J]. Pers Ubiquit Comput 19(3):551–567

    Article  Google Scholar 

  54. Lv Z, Tek A, Da Silva F et al (2013) Game on, science-how video game technology may help biologists tackle visualization challenges[J]. PLoS One 8(3):57990

    Article  Google Scholar 

  55. Lv Z, Yin T, Han Y et al (2011) WebVR—web virtual reality engine based on P2P network[J]. J Net 6(7):990–998

    Google Scholar 

  56. Ma R, Yao L, Jin M et al (2015) Robust environmental closed-loop supply chain design under uncertainty[J]. Chaos Solitons Fractals

  57. Mei X, Ling H (2011) Robust visual tracking and vehicle classification via sparse representation[J]. IEEE Trans Pattern Anal Mach Intell 33(11):2259–2272

    Article  Google Scholar 

  58. Mei X, Ling H, Wu Y et al (2011) Minimum error bounded efficient ℓ 1 tracker with occlusion detection[C]. IEEE Conf Comput Vis Pattern Recognit 2011:1257–1264

    Google Scholar 

  59. Nejhum SMS, Ho J, Yang MH (2008) Visual tracking with histograms and articulating blocks[C]. IEEE Conf Comput Vis Pattern Recognit 2008:1–8

    Google Scholar 

  60. Nesterov Y (2007) Gradient methods for minimizing composite objective function[J]

  61. Ning J, Zhang L, Zhang D et al (2012) Scale and orientation adaptive mean shift tracking[J]. IET Comput Vis 6(1):52–61

    Article  MathSciNet  Google Scholar 

  62. Olfati-Saber R, Jalalkamali P (2011) Collaborative target tracking using distributed Kalman filtering on mobile sensor networks[C]. IEEE Am Control Conf 2011:1100–1105

    Google Scholar 

  63. Qian C, Zhuang Y, Xu Z (2014) Visual tracking with structural appearance model based on extended incremental non-negative matrix factorization[J]. Neurocomputing 136:327–336

    Article  Google Scholar 

  64. Ross DA, Lim J, Lin RS et al (2008) Incremental learning for robust visual tracking[J]. Int J Comput Vis 77(1–3):125–141

    Article  Google Scholar 

  65. Sevilla-Lara L, Learned-Miller E (2012) Distribution fields for tracking[C]. IEEE Conf Comput Vis Pattern Recognit 2012:1910–1917

    Google Scholar 

  66. Viola P, Jones M (2001) Rapid object detection using a boosted cascade of simple features[C]//Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proc IEEE Comput Society Conf IEEE 1:I-511-I-518

  67. Viola P, Jones MJ (2004) Robust real-time face detection[J]. Int J Comput Vis 57(2):137–154

    Article  Google Scholar 

  68. Wang Q, Chen F, Xu W et al (2012) Online discriminative object tracking with local sparse representation[C]. IEEE Workshop Appl Comput Vis 2012:425–432

    Google Scholar 

  69. Wang K, Liu N, Sadooghi I et al (2015) Overcoming hadoop scaling limitations through distributed task execution[C]. IEEE Int Conf Clust Comput 2015:236–245

    Google Scholar 

  70. Wang D, Lu H (2013) On-line learning parts-based representation via incremental orthogonal projective non-negative matrix factorization[J]. Signal Process 93(6):1608–1623

    Article  Google Scholar 

  71. Wang D, Lu H, Yang MH (2013) Least soft-threshold squares tracking[C]. IEEE Conf Comput Vis Pattern Recognit 2013:2371–2378

    Google Scholar 

  72. Wang W, Lv Z, Li X et al (2015) Virtual reality based GIS analysis platform[C]. Neural Inf Proc. Springer International Publishing 638–645

  73. Wang Y, Su Y, Agrawal G (2015) A novel approach for approximate aggregations over arrays[C]//Proceedings of the 27th International Conference on Scientific and Statistical Database Management. ACM 4

  74. Wu Y, Lim J, Yang MH (2013) Online object tracking: a benchmark[C]. IEEE Conf Comput Vis Pattern Recognit 2013:2411–2418

    Google Scholar 

  75. Wu Y, Shen B, Ling H (2014) Visual tracking via online nonnegative matrix factorization[J]. IEEE Trans Circuits Syst Video Technol 24(3):374–383

    Article  Google Scholar 

  76. Xiong J, Tang Q (2014) 1-bit compressive data gathering for wireless sensor networks. J Sens 1(1):1–8

    Article  Google Scholar 

  77. Yan Y, Yang Y, Meng D, Liu G, Tong W, Hauptmann A, Sebe N (2015) Event oriented dictionary learning for complex event detection. IEEE Trans Image Process 24(6):1867–1878

    Article  MathSciNet  Google Scholar 

  78. Yang J, He S, Lin Y et al (2015) Multimedia cloud transmission and storage system based on internet of things[J]. Multimedia Tool Appl 1–16

  79. Yang Y, Xie Y, Zhang W et al (2015) Global coupled learning and local consistencies ensuring for sparse-based tracking[J]. Neurocomputing 160:191–205

    Article  Google Scholar 

  80. Yang T, Yu B, Wang H et al (2015) Cryptanalysis and improvement of Panda-public auditing for shared data in cloud and internet of things[J]. Multimedia Tool Appl 1–18

  81. Yang J, Zhou J, Lv Z et al (2015) A real-time monitoring system of industry carbon monoxide based on wireless sensor networks[J]. Sensors 15(11):29535–29546

    Article  Google Scholar 

  82. Yao R, Shi Q, Shen C et al (2013) Part-based visual tracking with online latent structural learning[C. IEEE Conf Comput Vis Pattern Recognit 2013:2363–2370

    Google Scholar 

  83. Yilmaz A, Javed O, Shah M (2006) Object tracking: A survey[J]. ACM Comput Surv (CSUR) 38(4)

  84. Yu Q, Dinh T B, Medioni G (2008) Online tracking and reacquisition using co-trained generative and discriminative trackers[M]. Computer Vision–ECCV 2008. Springer Berlin Heidelberg 678–691

  85. Zarezade A, Rabiee HR, Soltani-Farani A et al (2014) Patchwise joint sparse tracking with occlusion detection[J]. IEEE Trans Image Process 23(10):4496–4510

    Article  MathSciNet  Google Scholar 

  86. Zhang T, Ghanem B, Liu S et al (2012) Robust visual tracking via multi-task sparse learning[C]. IEEE Conf Comput Vis Pattern Recognit 2012:2042–2049

    Google Scholar 

  87. Zhang T, Ghanem B, Liu S et al (2012) Low-rank sparse learning for robust visual tracking[M]. Computer Vision–ECCV 2012. Springer Berlin Heidelberg 470–484

  88. Zhang T, Ghanem B, Liu S et al (2015) Robust visual tracking via exclusive context modeling[J]

  89. Zhang X, Han Y, Hao D S et al (2015) ARPPS: Augmented Reality Pipeline Prospect System[C]. Neural Inf Process. Springer International Publishing 647–656

  90. Zhang T, Jia K, Xu C et al (2014) Partial occlusion handling for visual tracking via robust part matching[C]. IEEE Conf Comput Vis Pattern Recognit 2014:1258–1265

    Google Scholar 

  91. Zhang T, Liu S, Xu C et al (2015) Structural sparse tracking[C]. Proc IEEE Conf Comput Vis Pattern Recogn 150–158

  92. Zhang S, Yao H, Sun X et al (2013) Sparse coding based visual tracking: review and experimental comparison[J]. Pattern Recogn 46(7):1772–1788

    Article  Google Scholar 

  93. Zhang S, Zhang X, Ou X et al (2015) Assessing attack surface with component-based package dependency[M]//network and system security. Springer International Publishing 405–417

  94. Zhang K, Zhang L, Yang MH (2014) Fast compressive tracking[J]. IEEE Trans Pattern Anal Mach Intell 36(10):2002–2015

    Article  Google Scholar 

  95. Zhang S, Zhou H, Jiang F et al (2015) Robust visual tracking using structurally random projection and weighted least squares[J]

  96. Zhong W, Lu H, Yang MH (2012) Robust object tracking via sparsity-based collaborative model[C. IEEE Conf Comput Vis Pattern Recognit 2012:1838–1845

    Google Scholar 

  97. Zhong B, Yao H, Chen S et al (2014) Visual tracking via weakly supervised learning from multiple imperfect oracles[J]. Pattern Recogn 47(3):1395–1410

    Article  MATH  Google Scholar 

  98. Zhou S, Hu P, Li K et al (2012) A new target tracking scheme based on improved mean shift and adaptive kalman filter[J]. Int J Adv Comput Technol 4(2)

Download references

Acknowledgments

This work was supported in part by Zhejiang Provincial Natural Science Foundation of China(ZJNSF LY14F010008) and NSFC(61572023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiping Xiong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, J., Tang, Q., He, X. et al. Tracking in multimedia data via robust reweighted local multi-task sparse representation for transportation surveillance. Multimed Tools Appl 75, 17531–17552 (2016). https://doi.org/10.1007/s11042-016-3464-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-3464-5

Keywords

Navigation