Skip to main content
Log in

Filtering LiDAR data based on adjacent triangle of triangulated irregular network

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The filtering of LiDAR points cloud data is a fundamental procedure in the production of Digital Elevation Model. Against the lack of using the relationship between the adjacent terrain and the points to be judged in the point cloud filtering, a LiDAR points cloud data filtering algorithm based on adjacent triangles in TIN (Triangulated Irregular Network) is proposed. It utilizes the elevation information of each triangle’s adjacent triangles to detect the building edge points, and acquires the building points by region growing, then detects the isolated points with the morphological filtering algorithm, finally determines the ground point set and generates DEM. We evaluate the performance of the proposed method on the ISPRS LiDAR reference dataset. Experimental results show that the algorithm can effectively remove non-ground points, keep the ground points and minimize total error rates effectively while maintaining acceptable Type I and Type II error rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Axelsson P (2000) DEM generation from laser scanner data using adaptive TIN models[J]. Int Arch Photogramm Remote Sens Spat Inf Sci 33(Part B4):110–117

    Google Scholar 

  2. Chen Q, Gong P, Baldocchi DD, Xie G (2007) Filtering airborne laser scanning data with morphological methods [J]. Photogramm Eng Remote Sens 73(2):175–185

    Article  Google Scholar 

  3. Feng Y, Jixian Z, et al (2009) Urban DEM generation from airborne Lidar data[C]. Urban Remote Sensing Event, 2009 Joint. IEEE, pp 1–5

  4. Gong M, Liu J, Li H, Cai Q, Linzhi S (2015) A multiobjective sparse feature learning model for deep neural networks. IEEE Trans Neural Netw Learn Syst 26(12):3263–3277

    Article  MathSciNet  Google Scholar 

  5. Han W, Li Y, Chen L (2012) High-precision DEM production in complex urban area using LiDAR data[C]. 2012 20th International Conference on Geoinformatics. IEEE, pp 1–5

  6. Haugerud R, Harding DJ (2001) Some algorithms for virtual deforestation(VDF)of LIDAR topographic survey data[J]. Int Arch Photogramm Remote Senning Spat Inf Sci 34(W4):211–218

    Google Scholar 

  7. Kilian J, Haala N, Englich M (1996) Capture and evaluation of airborne laser scanner data. Int Arch photogramm Remote Sens Spat Inf Sci 31(Part B3):383–388

    Google Scholar 

  8. Kraus K, Pfeifer N (1998) Determination of terrain models in wooded areas with airborne laser scanner data. ISPRS J Photogramm Remote Sens 53(4):193–203

    Article  Google Scholar 

  9. Liang C, Zhao W, Han P et al (2013) Building region derivation from LiDAR data using a reversed iterative mathematic morphological algorithm [J]. Opt Commun 286:244–250

    Article  Google Scholar 

  10. Meng X, Currit N, Zhao K (2010) Ground filtering algorithms for airborne LiDAR data: a review of critical issues[J]. Remote Sens 2(3):833–860

    Article  Google Scholar 

  11. Pingel TJ, Clarke KC, McBride WA (2013) An improved simple morphological filter for the terrain classification of airborne LIDAR data[J]. ISPRS J Photogramm Remote Sens 77:21–30

    Article  Google Scholar 

  12. Shao L, Hu P, Huang C (2004) The expatiation of DELAUNAY algorithm and a promising direction in application[J]. Sci Surv Mapp 29(6):68–71 (in Chinese)

    Google Scholar 

  13. Sithole G (2005) Segmentation and classification of airborne laser scanner data[D]. International Institute for Geo-information Science and Earth Observation (ITC) the degree of Master, Netherlands

    Google Scholar 

  14. Sithole G, Vosselman G (2004) Experimental comparison of filter algorithms for bare-Earth extraction from airborne laser scanning point clouds[J]. ISPRS J Photogramm Remote Sens 59(2):85–101

    Article  Google Scholar 

  15. Vosselman G (2000) Slope based filtering of laser altimetry data[J]. Int Arch Photogramm Remote Sens Spat Inf Sci 33(Part B3):935–942

    Google Scholar 

  16. Wang H, Zhang Y, Li P, Zha X (2013) A method of deriving dem from airborne lidar points cloud data[C].Urban Remonte Sensing Event (JURSE), Joint, pp, 013–016

  17. Wu C, Lu X, Li G et al (2013) Research on filtering algorithm for LiDAR data based on TIN[J]. Bull Surv Mapp 3:32–35 (in Chinese)

    Google Scholar 

  18. Yu H, Lu X et al (2010) Digital terrain model extraction from airborne LiDARdata in complex mining area[C]. 2010 18th International Conference on Geoinformatics. IEEE, pp 1–6

  19. Zhang K, Chen S et al (2003) A progressive morphological filter for removing nonground measurements from airborne LIDAR data[J]. IEEE Trans Geosci Remote Sens 41(4):872–882

    Article  Google Scholar 

  20. Zhang J, Lin X (2013) Filtering airborne LiDAR data by embedding smoothness-constrained segmentation in progressive TIN densification[J]. ISPRS J Photogramm Remote Sens 81:44–59

    Article  Google Scholar 

Download references

Acknowledgments

The work was jointly supported by the National Natural Science Foundations of China under grant No. 61472302,61272280,U1404620,and 41271447; The Program for New Century Excellent Talents in University under grant No. NCET-12-0919; The Fundamental Research Funds for the Central Universities under grant No. K5051203020, K5051303018, JB150313,JB150317,and BDY081422,; Natural Science Foundation of Shaanxi Province, under grant No.2014JM8310 and, 2010JM8027; The Creative Project of the Science and Technology State of xi’an under grant No. CXY1441(1); The State Key Laboratory of Geo-information Engineering under grant No.SKLGIE2014-M-4-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yining Quan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quan, Y., Song, J., Guo, X. et al. Filtering LiDAR data based on adjacent triangle of triangulated irregular network. Multimed Tools Appl 76, 11051–11063 (2017). https://doi.org/10.1007/s11042-016-3465-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-3465-4

Keywords

Navigation