Skip to main content
Log in

Low-rank unsupervised graph feature selection via feature self-representation

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Feature selection and subspace learning are two popular approaches of dimensionality reduction for solving the issue of ‘curse of dimensionality’ in high-dimensional data. However, most of previous methods of feature selection and subspace learning ignore the fact that there exist noise and outliers in high-dimensional data, which increase the rank of the data matrix so that decreasing the stability of learning models. In this paper, we integrate a feature-level self-representation loss function, a low-rank constraint, a graph Laplacian regularizer, and a sparsity regularizer into a unified framework to conduct unsupervised feature selection for solving mentioned issues. Specifically, we first propose a new feature-level self-representation loss function plus a sparsity regularizer ( 2,1-norm regularizer) to select representative features, and then push a low-rank constraint on the coefficient matrix which considers the response variables as a whole group to avoid the impact of noise and outliers, and a graph regularizer to preserve the local structures of the data to conduct subspace learning in the framework of feature selection. Experimental results on real databases implied that the proposed method effectively selected the most representative features and removed the adverse effect of irrelevant features, compared to the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Available at http://www.csie.ntu.edu.tw/~cjlin/libsvm/

  2. Available at http://archive.ics.uci.edu/ml/

  3. Available at http://featureselection.asu.edu/datasets.php

  4. Available at http://see.xidian.edu.cn/vipsl/database_Face.html

References

  1. Cai X, Ding C, Nie F, Huang H (2013) On the equivalent of low-rank linear regressions and linear discriminant analysis based regressions. In: SIGKDD, pp 1124–1132

  2. Cao J, Wu Z, Wang Y, Zhuang Y (2012) Hybrid collaborative filtering algorithm for bidirectional web service recommendation. Knowl Inf Syst 36(3):607–627

    Article  Google Scholar 

  3. Cao J, Wu Z, Mao B, Zhang Y (2013a) Shilling attack detection utilizing semi-supervised learning method for collaborative recommender system. World Wide Web-internet & Web Information Systems 16(5–6):729–748

    Google Scholar 

  4. Cao J, Wu Z, Wu J, Liu W (2013b) Towards information-theoretic k-means clustering for image indexing. Signal Process 93(7):2026–2037

    Article  Google Scholar 

  5. Cao J, Wu Z, Wu J (2014) Scaling up cosine interesting pattern discovery: a depth-first method. Inf Sci 266(5):31–46

    Article  Google Scholar 

  6. Gu Q, Li Z, Han J (2011) Joint feature selection and subspace learning. In: IJCAI, vol 22, pp 1294–1299

  7. Hou C, Nie F, Li X, Yi D, Wu Y (2013) Joint embedding learning and sparse regression: a framework for unsupervised feature selection. IEEE Transactions on Cybernetics 44(6):793–804

    Google Scholar 

  8. Jie C, Wu Z, Wu J, Hui X (2013) Sail: Summation-based incremental learning for information-theoretic text clustering. IEEE Transactions on Cybernetics 43(2):570–584

    Article  Google Scholar 

  9. Leung Y, Hung Y (2010) A multiple-filter-multiple-wrapper approach to gene selection and microarray data classification. IEEE/ACM Trans Comput Biol Bioinform 7(1):108–17

    Article  Google Scholar 

  10. Lewandowski M, Makris D, Velastin S, Nebel JC (2014) Structural laplacian eigenmaps for modeling sets of multivariate sequences. IEEE Transactions on Cybernetics 44(6):936–949

    Article  Google Scholar 

  11. Liu R, Yang N, Ding X, Ma L (2009) An unsupervised feature selection algorithm: Laplacian score combined with distance-based entropy measure. In: IITA, pp 65–68

  12. Liu G, Lin Z, Yu Y (2010) Robust subspace segmentation by low-rank representation. In: CVPR, pp 663–670

  13. Nie F, Xiang S, Jia Y, Zhang C, Yan S (2008) Trace ratio criterion for feature selection. In: AAAI, pp 671–676

  14. Nie F, Huang H, Cai X, Ding CH (2010) Efficient and robust feature selection via joint 2,1-norms minimization. In: NIPS, pp 1813–1821

  15. Qin Y, Zhang S, Zhu X, Zhang J, Zhang C (2007) Semi-parametric optimization for missing data imputation. Appl Intell 27(1):79–88

    Article  MATH  Google Scholar 

  16. Sunzhong LV, Jiang H, Zhao L, Wang D, Fan M (2013) Manifold based fisher method for semi-supervised feature selection. In: FSKD, pp 664–668

  17. Tabakhi S, Moradi P, Akhlaghian F (2014) An unsupervised feature selection algorithm based on ant colony optimization. Eng Appl Artif Intell 32:112–123

    Article  Google Scholar 

  18. Thung KH, Paramesran R, Lim CL (2012) Content-based image quality metric using similarity measure of moment vectors. Pattern Recogn 45(6):2193–2204

    Article  MATH  Google Scholar 

  19. Thung KH, Wee CY, Yap PT, Shen D (2014) Neurodegenerative disease diagnosis using incomplete multi-modality data via matrix shrinkage and completion. Neuroimage 91(2):386–400

    Article  Google Scholar 

  20. Thung KH, Wee CY, Yap PT, Shen D (2015a) Identification of progressive mild cognitive impairment patients using incomplete longitudinal mri scans. Brain Struct Funct:1–17

  21. Thung KH, Yap PT, Adeli-M E, Shen D (2015b) Joint diagnosis and conversion time prediction of progressive mild cognitive impairment (pmci) using low-rank subspace clustering and matrix completion. pp 527–534

  22. Unler A, Murat A, Chinnam RB (2011) Mr2pso: a maximum relevance minimum redundancy feature selection method based on swarm intelligence for support vector machine classification. Inf Sci 181(20):4625–4641

    Article  Google Scholar 

  23. Wang JY, Yao J, Sun Y (2014) Semi-supervised local-learning-based feature selection. In: IJCNN, pp 1942–1948

  24. Xiang S, Zhu Y, Shen X, Ye J (2011) Optimal exact least squares rank minimization. In: KDD : proceedings / International Conference on Knowledge Discovery & Data Mining. International Conference on Knowledge Discovery & Data Mining, pp 480–488

  25. Xu Y, Song F, Feng G, Zhao Y (2010) A novel local preserving projection scheme for use with face recognition. Expert Syst Appl 37(9):6718–6721

    Article  Google Scholar 

  26. Yang Y, Yang Y, Shen HT (2013) Effective transfer tagging from image to video. ACM Trans Multimed Comput Commun Appl 9(2):1137–1140

    Article  Google Scholar 

  27. Yang Y, Ma Z, Yang Y, Nie F, Shen HT (2014a) Multitask spectral clustering by exploring intertask correlation. IEEE Transactions on Cybernetics 45 (5):1069–1080

    Google Scholar 

  28. Yang Y, Zha ZJ, Gao Y, Zhu X (2014b) Corrections to exploiting web images for semantic video indexing via robust sample-specific loss. IEEE Trans Multimedia 16 (6):1677–1689

    Article  Google Scholar 

  29. Yang Y, Zhang H, Zhang M, Shen F, Li X (2015) Visual coding in a semantic hierarchy. pp 59–68

  30. Zhang C, Qin Y, Zhu X, Zhang J, Zhang S (2006) Clustering-based missing value imputation for data preprocessing. In: IEEE International Conference on Industrial Informatics, pp 1081– 1086

  31. Zhang J, Liang J, Zhao H (2013) Local energy pattern for texture classification using self-adaptive quantization thresholds. IEEE Trans Image Process 22(1):31–42

    Article  MathSciNet  Google Scholar 

  32. Zhang J, Chen D, Liang J, Xue H, Lei J, Wang Q, Chen D, Meng M, Jin Z, Tian J (2014) Incorporating mri structural information into bioluminescence tomography: system, heterogeneous reconstruction and in vivo quantification. Biomedical Optics Express 5(6):1861–76

    Article  Google Scholar 

  33. Zhang Q, Tian Y, Yang Y, Pan C (2015) Automatic spatialspectral feature selection for hyperspectral image via discriminative sparse multimodal learning. IEEE Trans Geosci Remote Sens 53(1):261–279

    Article  Google Scholar 

  34. Zhu X, Zhang S, Zhang J, Zhang C (2007) Cost-sensitive imputing missing values with ordering. In: AAAI, pp 1922–1923

  35. Zhu X, Huang Z, Shen HT, Cheng J, Xu C (2012) Dimensionality reduction by mixed kernel canonical correlation analysis. Pattern Recogn 45(8):3003–3016

    Article  MATH  Google Scholar 

  36. Zhu X, Suk H, Shen D (2014a) Multi-modality canonical feature selection for alzheimer’s disease diagnosis. In: MICCAI, pp 162–169

  37. Zhu X, Suk HI, Shen D (2014b) A novel matrix-similarity based loss function for joint regression and classification in ad diagnosis. Neuroimage 100:91–105

    Article  Google Scholar 

  38. Zhu P, Zuo W, Zhang L, Hu Q, Shiu SC (2015a) Unsupervised feature selection by regularized self-representation. Pattern Recogn 48(2):438–446

    Article  Google Scholar 

  39. Zhu X, Suk HI, Wang L, Lee SW, Shen D (2015) Alzheimers Disease Neuroimaging Initiative. A novel relational regularization feature selection method for joint regression and classification in ad diagnosis. Med Image Anal. doi:10.1016/j.media.2015.10.008

  40. Zhu X, Li X, Zhang S (2016a) Block-row sparse multiview multilabel learning for image classification. IEEE Trans Cybernetics 46(2):450–461

  41. Zhu X, Li X, Zhang S, Ju C, Wu X (2016) Robust joint graph sparse coding for unsupervised spectral feature selection. IEEE Transactions on Neural Networks and Learning Systems. doi:10.1109/TNNLS.2016.2521602

  42. Zhu X, Suk H, Lee S, Shen D (2016c) Subspace regularized sparse multitask learning for multiclass neurodegenerative disease identification. IEEE Trans Biomed Engineering 63(3):607–618

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China (Grant No: 61263035, 61573270, 61450001 and 61363009), the China 973 Program (Grant No: 2013CB329404), the Guangxi Natural Science Foundation (Grant No: 2015GXNSFCB139011), the Guangxi Higher Institutions’ Program of Introducing 100 High-Level Over-seas Talents, the Guangxi Collaborative Innovation Center of Multi-Source Information Integration and Intelligent Processing, Innovation Project of Guangxi Graduate Education under grant YCSZ2016046 and the project “Application and Research of Big Data Fusion in Inter-City Traffic Integration of The Xijiang River - Pearl River Economic Belt(da shu jv rong he zai xijiang zhujiang jing ji dai cheng ji jiao tong yi ti hua zhong de ying yong yu yan jiu )”.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaofeng Zhu or Shichao Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, W., Zhu, X., Cheng, D. et al. Low-rank unsupervised graph feature selection via feature self-representation. Multimed Tools Appl 76, 12149–12164 (2017). https://doi.org/10.1007/s11042-016-3937-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-3937-6

Keywords

Navigation