Skip to main content
Log in

Object classification using a local texture descriptor and a support vector machine

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Objects classification or object detection is one of the most challenging tasks in computer vision. Digital images taken of real-life scenes capture objects at different positions, rotations and scales. Furthermore, variations in lighting, shape, color and texture within the same class make object classification a huge obstacle for computer vision algorithms. The most robust methodologies related to variations in lighting, rotation, color and scale, are based on “key points” localization, followed by applying a local descriptor to each surrounding region. Researchers have used various methods for detecting key points and have applied various local descriptors. Of these, the Scale-Invariant Feature Transform (SIFT), Speeded Up Robust Features (SURF) and Center-Symmetric Local Binary Pattern (CS-LBP) methods have obtained good performance and are associated with clustering algorithms or histogram representation based on independent features (Bag of Features (BoF)). In the BoF approach, the visual codebook extracted around the “key points” regions can effectively describe objects by their appearance based on local texture analysis. Recently, we proposed two new texture descriptors for object detection based on the Local Mapped Pattern (LMP) approach. The Mean-Local Mapped Pattern (M-LMP) and the Center Symmetric Local Mapped Pattern (CS-LMP) exhibit better performance than SIFT and CS-LBP, but prior results have shown that the size of descriptors could be reduced without loss of sensitivity. In this paper, we investigated reducing the size of the M-LMP descriptor and then evaluating its performance for object classification by a Support Vector Machine (SVM) classifier. In our experiments, we implemented an object recognition system based on the M-LMP reduced descriptor, and compared our results against the SIFT, Local Intensity Order Pattern (LIOP) and CS-LMP descriptors. The object classification results were analyzed using a BoF model and a SVM classifier, with the result that performance using the reduced descriptor is better than the other three well-known methods tested and also requires less processing time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Notes

  1. http://www.vision.caltech.edu/ImageDatasets/Caltech101/

  2. http://www.image-net.org/

References

  1. Abdel-Hakim A E, Farag A A (2006) Csift: a sift descriptor with color invariant characteristics. Proc 2006 IEEE Comput Soc Conf Comput Vis Pattern Recog (CVPR’06) 2:1978–1983

    Google Scholar 

  2. Bai G, Zhu Y, Ding Z (2008) A hierarchical face recognition method based on local binary pattern. CISP08 Proc 2008 Congress Image Signal Process 2:610–614

    Article  Google Scholar 

  3. Bay H, Tuytelaars T, Gool L V (2006) Surf: speeded up robust features. Eur Conf Comput Vis 1:404–417

    Google Scholar 

  4. Cai H, Mikolajczyk K, Matas J (2011) Learning linear discriminant projections for dimensionality reduction of image descriptors. Pattern Anal Mach Intell 33(2):338–352

    Article  Google Scholar 

  5. Elkan C (2003) Using the triangle inequality to accelerate k-means. In: Proceedings of the twentieth international conference on machine learning

  6. Ferraz CT, Junior OP, Gonzaga A (2014) Feature description based on center-symmetric local mapped patterns. In: 29th Symposium on applied computing, pp 39–44

  7. Ferraz C T, Junior O P, Rosa M V, Gonzaga A (2014) Object recognition based on bag of features and a new local pattern descriptor. Int J Pattern Recog Artif Intell 28(8):1455,010–1–1455,010–32. doi:10.1142/S0218001414550106

    Article  Google Scholar 

  8. Heikkilä M, Pietikäinen M, Schmid C (2009) Description of interest regions with local binary patterns. Pattern Recog 42:425–436

    Article  MATH  Google Scholar 

  9. Hoiem D, Chodpathumwan Y, Dai Q (2012) Diagnosing error in object detectors. Comput Vis (ECCV) 7574:340–353

    Google Scholar 

  10. Hou J, Kang J, Qi N (2010) On vocabulary size in bag-of-visual-words representation, vol 6297. Springer-Verlag Berlin Heidelberg, pp 414–424

  11. Hua G, Brown M, Winder S (2007) Discriminant embedding for local image descriptors. In: Computer vision, ICCV, pp 1–8

  12. Iscen A, Tolias G, Gosselin P H, Jegou H (2015) A comparison of dense region detectors for image search and fine-grained classification. IEEE Trans Image Process 24(8):2369–2381

    Article  MathSciNet  Google Scholar 

  13. Jgou H, Douze M, Schmid C (2011) Improving bag-of-features for large scale image search. Int J Comput Vis 87(3):316–336

    Article  Google Scholar 

  14. Jin H, Liu Q, Lu H, Tong X (2004) Face detection using improved lbp under bayesian framework. In: Proceedings of the third international conference on image and graphics, pp 306–309

  15. Jurie F, Triggs B (2005) Creating efficient codebooks for visual recognition. In: ICCV, vol 1, pp 604–610

  16. Ke Y, Sukthankar R (2004) Pca-sift: a more distinctive representation for local image descriptors. Comput Vis Pattern Recog 2:506–513

    Google Scholar 

  17. KMikolajczyk, Schmid C (2005) A performance evaluation of local descriptors. IEEE Trans Pattern Anal Mach Intell 27(10):1615–1630

    Article  Google Scholar 

  18. Lazebnik S, Schmid C, Ponce J (2006) Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. IEEE Conf Comput Vis Pattern Recog 2:2169–2178

    Google Scholar 

  19. Leibe B, Leonardis A, Schiele B (2007) Robust object detection with interleaved categorization and segmentation. Int J Comput Vis 77(1):259–289

    Google Scholar 

  20. Lowe D G (1999) Object recognition from local scale-invariant features. In: International conference on computer vision, pp 1150–1157

  21. Lowe D G (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60:91–110

    Article  Google Scholar 

  22. MacQueen J B (1967) Some methods for classification and analysis of multivariate observations. Proc 5th Berkeley Symp Math Stat Probab 1:281–297

    MathSciNet  MATH  Google Scholar 

  23. Mikolajczyk K, Matas J (2007) Improving descriptors for fast tree matching by optimal linear projection. In: IEEE 11th international conference on computer vision, pp 1–8. doi:10.1109/ICCV.2007.4408871

  24. Mikolajczyk K, Schmid C (2002) An affine invariant interest point detector. In: Proceedings of the 7th European conference on computer vision-part I, ECCV ’02. http://dl.acm.org/citation.cfm?id=645315.649184. Springer-Verlag, London, pp 128–142

  25. Mikolajczyk K, Schmid C (2004) Scale & affine invariant interest point detectors. Int J Comput Vis Kluwer Acad Publ Hingham, MA USA 60(1):63–86

    Google Scholar 

  26. Nister D, Stewenius H (2006) Scalable recognition with a vocabulary tree. CVPR ’06 Proc 2006 IEEE Comput Soc Conf Comput Vis Pattern Recog 2:2161–2168. doi:10.1109/CVPR.2006.264

    Google Scholar 

  27. Nowak E, Jurie F, Triggs B (2006) Sampling strategies for bag-of-features image classification. In: Computer vision ECCV 2006, lecture notes in computer science. doi:10.1007/11744085_38, vol 3954. Springer, Berlin, pp 490–503

  28. Ojala T, MPietikäinen DHarwood (1996) A comparative study of texture measures with classification based on feature distributions. Pattern Recog 29(1):51–59

    Article  Google Scholar 

  29. Papageorgiou C, Poggio T (2000) A trainable system for object detection. Int J Comput Vis 38(1):15–33. doi:10.1023/A:1008162616689

    Article  MATH  Google Scholar 

  30. Pelleg D, Moore A W (2000) X-means: extending k-means with efficient estimation of the number of clusters. In: Proceeding ICML ’00 proceedings of the seventeenth international conference on machine learning, pp 727–734

  31. Perronnin F, Dance C, Csurka G, Bressan M (2006) Adapted vocabularies for generic visual categorization. Comput Vis ECCV 2006(3954):464–475

    Google Scholar 

  32. Schneiderman H, Kanade T (2000) A statistical method for 3d object detection applied to faces and cars. Comput Vis Pattern Recog 1:746–751

    Google Scholar 

  33. Sivic J, Zisserman A (2003) Video google: a text retrieval approach to object matching in videos. In: Proceedings of the ninth IEEE international conference on computer vision (ICCV’03)

  34. Steinbach M, Karypis G, Kumar V (2000) A comparison of document clustering techniques. In: KDD workshop on text mining

  35. Streicher A, Burkhardt H, Fehr J (2009) A bag of features approach for 3d shape retrieval. In: International symposium on visual computing

  36. Vedaldi A, Fulkerson B (2010) Vlfeat: an open and portable library of computer vision algorithms. In: Proceedings of the international conference on multimedia, MM ’10. doi:10.1145/1873951.1874249. ACM, New York, pp 1469–1472

  37. Vedaldi A, Zisserman A (2012) Efficient additive kernels via explicit feature maps. IEEE Trans Pattern Anal Mach Intell 34(3):480–492

    Article  Google Scholar 

  38. Viola P, Jones M J (2004) Robust real-time face detection. Int J Comput Vis 57(2):137–154

    Article  Google Scholar 

  39. Wan Z, Fan B, Wu F (2011) Local intensity order pattern for feature description. Comput Vis (ICCV):603–610

  40. Yuan X, Yu J, Qin Z, Wan T (2011) A sift-lbp image retrieval model based on bag-of-features. In: 18th IEEE international conference on image processing, pp 1061–1064

  41. Zhang S, Tian Q, Hua G, Huang Q, Li S (2009) Descriptive visual words and visual phrases for image applications. In: ACM multimedia, pp 19–24

  42. Zhao G, Chen L, Chen G, Yuan J (2010) Kpb-sift: acompact local feature descriptor. In: MM ’10 Proceedings of the international conference on Multimedia, pp 1175–1178

Download references

Acknowledgments

The authors would like to thank the São Paulo Research Foundation (FAPESP), grant #2015/20812-5, and National Council for Scientific and Technological Development (CNPQ) for their financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adilson Gonzaga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferraz, C.T., Gonzaga, A. Object classification using a local texture descriptor and a support vector machine. Multimed Tools Appl 76, 20609–20641 (2017). https://doi.org/10.1007/s11042-016-4003-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-4003-0

Keywords

Navigation