Skip to main content
Log in

Efficient l q norm based sparse subspace clustering via smooth IRLS and ADMM

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Recently, sparse subspace clustering, as a subspace learning technique, has been successfully applied to several computer vision applications, e.g. face clustering and motion segmentation. The main idea of sparse subspace clustering is to learn an effective sparse representation that are used to construct an affinity matrix for spectral clustering. While most of existing sparse subspace clustering algorithms and its extensions seek the forms of convex relaxation, the use of non-convex and non-smooth l q (0 < q < 1) norm has demonstrated better recovery performance. In this paper we propose an l q norm based Sparse Subspace Clustering method (lqSSC), which is motivated by the recent work that l q norm can enhance the sparsity and make better approximation to l 0 than l 1. However, the optimization of l q norm with multiple constraints is much difficult. To solve this non-convex problem, we make use of the Alternating Direction Method of Multipliers (ADMM) for solving the l q norm optimization, updating the variables in an alternating minimization way. ADMM splits the unconstrained optimization into multiple terms, such that the l q norm term can be solved via Smooth Iterative Reweighted Least Square (SIRLS), which converges with guarantee. Different from traditional IRLS algorithms, the proposed algorithm is based on gradient descent with adaptive weight, making it well suit for general sparse subspace clustering problem. Experiments on computer vision tasks (synthetic data, face clustering and motion segmentation) demonstrate that the proposed approach achieves considerable improvement of clustering accuracy than the convex based subspace clustering methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. http://people.cs.uchicago.edu/~xiaofei/

  2. http://vision.jhu.edu/data

  3. 3 http://www.eecs.berkeley.edu/~ehsan.elhamifar/code.htm

  4. 4 https://sites.google.com/site/guangcanliu/

  5. 5 http://wangshusen.github.io/publications.html

  6. 6 https://sites.google.com/site/canyilu/

References

  1. Basri R, Jacobs DW (2001) Lambertian reflectance and linear subspaces. International Conference on Computer Vision

  2. Basri R, Jacobs D W (2003) Lambertian reflectance and linear subspaces. IEEE Trans Pattern Anal Mach Intell 25.2:218–233

    Article  Google Scholar 

  3. Boyd S, et al. (2011) Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends Mach Learn 3.1:1–122

    Google Scholar 

  4. Candes EJ, Wakin MB, Boyd SP (2008) Enhancing sparsity by reweighted l1 minimization. J Fourier Anal Appl 14.5–6:877–905

    Article  MATH  Google Scholar 

  5. Cheng W, Chow T WS, Zhao M (2016) Locality constrained-p sparse subspace clustering for image clustering[J]. Neurocomputing 205:22–31

    Article  Google Scholar 

  6. Daubechies I, et al. (2010) Iteratively reweighted least squares minimization for sparse recovery. Commun Pure Appl Math 63.1:1–38

    Article  MATH  MathSciNet  Google Scholar 

  7. Deng Y, et al. (2013) Low-rank structure learning via nonconvex heuristic recovery. IEEE Trans Neural Netw Learn Syst 24.3:383–396

    Article  Google Scholar 

  8. Dyer E L, Sankaranarayanan A C, Baraniuk R G (2013) Greedy feature selection for subspace clustering[J]. J Mach Learn Res 14(1):2487–2517

    MATH  MathSciNet  Google Scholar 

  9. Dyer EL, et al. (2015) Self-expressive decompositions for matrix approximation and clustering. arXiv preprint arXiv:1505.00824

  10. Elhamifar E, Vidal R (2013) Sparse subspace clustering: algorithm, theory, and applications. IEEE Trans Pattern Anal Mach Intell 35.11:2765–2781

    Article  Google Scholar 

  11. Feng J, Lin Z, Xu H, et al. (2014) Robust subspace segmentation with block-diagonal prior[C]. In: IEEE Conference on computer vision and pattern recognition (CVPR), 2014. IEEE, pp 3818–3825

  12. Fornasier M, Rauhut H, Ward R (2011) Low-rank matrix recovery via iteratively reweighted least squares minimization. SIAM J Optim 21.4:1614–1640

    Article  MATH  MathSciNet  Google Scholar 

  13. Fornasier M, et al. (2015) Conjugate gradient acceleration of iteratively re-weighted least squares methods. arXiv preprint arXiv:1509.04063

  14. Guo S, Wang Z, Ruan Q (2013) Enhancing sparsity via l p (0 < p < 1) minimization for robust face recognition. Neurocomputing 99:592–602

    Article  Google Scholar 

  15. He R, et al. (2015) Robust subspace clustering with complex noise. IEEE Trans Image Process 24.11:4001–4013

    MathSciNet  Google Scholar 

  16. Heckel R, B?lcskei H (2013) Robust subspace clustering via thresholding[J]. arXiv preprint arXiv:1307.4891

  17. Heckel R, Tschannen M, Bölcskei H (2015) Dimensionality-reduced subspace clustering[J]. arXiv preprint arXiv:1507.07105

  18. Huang S-Y, Yeh Y-R, Eguchi S, Candes E J, Li X, Ma Y, Wring J (2009) Robust principal component analysis. J Assoc Comput Mach 53(3):3179–213

    MathSciNet  Google Scholar 

  19. Hund M, Böhm D, Sturm W, et al. (2016) Visual analytics for concept exploration in subspaces of patient groups[J]. Brain Inform:1–15

  20. Lai M-J, Wang J (2011) An unconstrained l q minimization with l q for sparse solution of underdetermined linear systems. SIAM J Optim 21.1:82–101

    Article  MATH  Google Scholar 

  21. Lai M-J, Yangyang X, Yin W (2013) Improved iteratively reweighted least squares for unconstrained smoothed ł q minimization. SIAM J Numer Anal 51.2:927–957

    Article  MATH  MathSciNet  Google Scholar 

  22. Liu G, Lin Z, Yong Y (2010) Robust subspace segmentation by low-rank representation. In: Proceedings of the 27th international conference on machine learning (ICML-10)

  23. Liu J, Chen Y, Zhang J, et al. (2014) Enhancing low-rank subspace clustering by manifold regularization[J]. IEEE Trans Image Process 23(9):4022–4030

    Article  MathSciNet  Google Scholar 

  24. Lu C (2012) Robust and efficient subspace segmentation via least squares regression, ECCV. pp 1–14

  25. Lu C, Lin Z, Yan S (2015) Smoothed low rank and sparse matrix recovery by iteratively reweighted least squares minimization. IEEE Trans Image Process 24.2:646–654

    MathSciNet  Google Scholar 

  26. Peng X, Yi Z, Tang H (2015) Robust subspace clustering via thresholding ridge regression. In: AAAI Conference on artificial intelligence (aaaI)

  27. Soltanolkotabi M, Elhamifar E, Candes E J (2014) Robust subspace clustering. Ann Stat 42.2:669–699

    Article  MATH  MathSciNet  Google Scholar 

  28. Sui Y, Zhang S, Zhang L (2015) Robust visual tracking via sparsity-induced subspace learning[J]. IEEE Trans Image Process 24(12):4686–4700

    Article  MathSciNet  Google Scholar 

  29. Tron R, Vidal R (2007) A benchmark for the comparison of 3-d motion segmentation algorithms. In: IEEE Conference on computer vision and pattern recognition, 2007. CVPR’07. IEEE

  30. Vidal R, Favaro P (2014) Low rank subspace clustering (LRSC). Pattern Recog Lett 43:47–61

    Article  Google Scholar 

  31. Wang S, Yuan X, Yao T, Yan S (2011) Efficient subspace segmentation via quadratic programming. In: Proc. Twenty-Fifth AAAI conf. artif. intell., pp 519–524

  32. Wen J, Li D, Zhu F (2015) Stable recovery of sparse signals via lp-minimization. Appl Comput Harm Anal 38.1:161–176

    Article  MATH  Google Scholar 

  33. Xu J, et al. (2015) Reweighted sparse subspace clustering. Comput Vis Image Understand

  34. Yang AY, et al. (2013) Fast-minimization algorithms for robust face recognition. IEEE Trans Image Process 22.8:3234–3246

    Article  Google Scholar 

  35. You C, Vidal R (2015) Subspace-sparse representation. arXiv preprint arXiv:1507.01307

  36. Zhang C H, Zhang T (2012) A general theory of concave regularization for high-dimensional sparse estimation problems[J]. Stat Sci:576–593

  37. Zhang Y, et al. (2013) Robust subspace clustering via half-quadratic minimization. In: 2013 IEEE International conference on computer vision (ICCV). IEEE

Download references

Acknowledgments

This work is partially supported by NSF of China under Grant 61672548, 61173081, and the Guangzhou Science and Tech-nology Program, China, under Grant 201510010165.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HongYang Chao.

Appendix: Proof of the Theory 1

Appendix: Proof of the Theory 1

To prove Theorem 1, let \(u = z^{(j)} - \frac {1}{\rho } w^{(j)}\) , and u is a constant here. Firstly, for j=1,..,d

$$y_{j} = x_{j}^{(k)2} + {\epsilon_{k}^{2}}, \ \ \ z_{j} = x_{j}^{(k+1)2} + \epsilon_{k+1}^{2} $$

Then

$$\begin{array}{@{}rcl@{}} && J(x^{(k)}, \epsilon_{k}) - J(x^{(k+1)}, \epsilon_{k+1}) \\ &&= \sum\limits_{j = 1}^{d} (y_{j}^{q/2} - z_{j}^{q/2}) + \rho/2 (||x^{(k)} - u||_{2}^{2} - ||x^{(k+1)} - u||_{2}^{2}) \end{array} $$
(29)

Note that f(x)=x q/2(0 < q < 1) is a concave function, for any y,zR 1

$$ f(y) - f(z) \geq \frac{q}{2} y^{\frac{q}{2} - 1} (y - z) $$
(30)

Using (30), we have

$$\begin{array}{@{}rcl@{}} && J(x^{(k)}, \epsilon_{k}) - J(x^{(k+1)}, \epsilon_{k+1}) \\ && = \sum\limits_{j = 1}^{d} (y_{j}^{q/2} - z_{j}^{q/2}) + \frac{\rho}{2} (||x^{(k)} - u||_{2}^{2} - ||x^{(k+1)} - u||_{2}^{2}) \end{array} $$
(31)

By using the rule of (30), the left part of (31) can be transformed as

$$\begin{array}{@{}rcl@{}} &&\sum\limits_{j = 1}^{d} y_{j}^{q/2} - z_{j}^{q/2} \ge \frac{q}{2} \sum\limits_{j = 1}^{d} W_{jj}^{k} (x_{j}^{(k)2} - x_{j}^{(k+1)2}) \\ &&= \frac{q}{2} \sum\limits_{j = 1}^{d} W_{jj}^{k} (x_{j}^{(k)} - x_{j}^{(k+1)})^{2} + q\sum\limits_{j = 1}^{d} W_{jj}^{(k)} (x_{j}^{(k)} -x_{j}^{(k+1)})x_{j}^{(k+1)} \\ &&=\frac{q}{2} \sum\limits_{j = 1}^{d} W_{jj}^{k} (x_{j}^{(k)} - x_{j}^{(k+1)})^{2} + q(x^{(k)} -x^{(k+1)})'W^{(k)}x^{(k+1)} \end{array} $$
(32)

We now consider the (18), multiplying (x (k)x (k+1)) on both sides

$$ q(x^{(k)} - x^{(k+1)})^{T}W^{(k)}x^{(k+1)} + \rho(x^{(k)} - x^{(k+1)})'(x^{(k+1)} - u) = 0 $$
(33)

Simplify (32) and get (33), then convert it as follows

$$\begin{array}{@{}rcl@{}} &&\sum\limits_{j = 1}^{d} y_{j}^{q/2} - z_{j}^{q/2} \\ &&\ge \frac{q}{2} \sum\limits_{j = 1}^{d} W_{jj}^{k} (x_{j}^{(k)} - x_{j}^{(k+1)})^{2} - \rho(x^{(k)} - x^{(k+1)})^{T}(x^{(k+1)} - u) \end{array} $$
(34)

Note that f(x)=x 2 is a concave function, then for all y,zR d

$$f(y) - f(z) \geq 2z(y - z) $$

By employing this inequality, we have

$$ ||x^{(k)} - u||_{2}^{2} - ||x^{(k+1)} - u||_{2}^{2} \ge 2(x^{(k)} - x^{(k+1)})'(x^{(k+1)} - u) $$
(35)

Summarized (31), (34), (35)

$$J(x^{(k)}, \epsilon_{k}) - J(x^{(k+1)}, \epsilon_{k+1}) \ge 0 $$

This prove that J(x,𝜖) is an decreasing sequence. Note that

$$ 0<||x^{(k)}||_{q}^{q} \le ||x^{(k)}||_{q,\epsilon_{k}}^{q} \le J(x^{(k)},\epsilon_{k}) \le J(x^{(0)},\epsilon_{0}) $$
(36)

Thus the sequence {x (k)} is bounded. Furthermore, if 𝜖>0, the boundedness of {x (k))} implies that there exists a subsequence {x (k j )} converging to some point x 𝜖 , Note that \(||x^{(k+1)} - x^{(k)}||_{2} \rightarrow 0\), thus the subsequence x (k j ) also converges to x 𝜖 . Consider the subsequence in the (18)

$$qW^{(k_{j})}x^{(k_{j})} + \rho (x^{(k_{j})} - u) = 0 $$

Let \(k_{j} \rightarrow \infty \), we get

$$ qW^{\epsilon_{*}}x^{\epsilon_{*}} + \rho (x^{\epsilon_{*}} - u)=0 $$
(37)

Therefore, x 𝜖 is a critical point of (18).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuang, S., Chao, H. & Yang, J. Efficient l q norm based sparse subspace clustering via smooth IRLS and ADMM. Multimed Tools Appl 76, 23163–23185 (2017). https://doi.org/10.1007/s11042-016-4091-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-4091-x

Keywords

Navigation