Skip to main content
Log in

High-fidelity lossless data hiding based on predictors selection

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Reversible data hiding based on prediction methods is a data hiding technique wherein secret bits can be efficiently hidden into cover images. In this paper, we propose a reversible data hiding method based on multiple prediction methods and local complexity. At each level of data hiding algorithm, we evaluate four prediction methods to decide which method should be chosen to embed secret messages. We propose two tactics to evaluate and select prediction methods. When a prediction method is chosen to perform a shifting and embedding process, a threshold based on local complexity is used to determine which pixel should join the shifting and embedding process. If the local complexity of a pixel is smaller than the threshold, the pixel will join the process; otherwise, the pixel will cease to join the process. Therefore, more pixels will avoid executing pixel shifting. Doing so results in stego-images with lower distortion. The experimental results show that our embedding capacity and quality is superior to those of other approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Al-Qershi QM, Khoo BE (2011) High capacity data hiding schemes for medical images based on difference expansion. J Syst Softw 31(4):787–794

    Google Scholar 

  2. Alttar AM (2004) Reversible watermark using the difference expansion of a generalized integer transform. IEEE Trans Image Process 13(8):1147–1156

    Article  MathSciNet  Google Scholar 

  3. Chang CC, Pai PY, Yeh CM, Chan YK (2010) A high payload frequency-based reversible data hiding method. Inform Sci 180(11):2286–2298

    Article  Google Scholar 

  4. Denemark T, Sedighi V, Holub V, Cogranne R, Fridrich J (2014) Select-channel-aware rich model for steganalysis of digital images. Proc IEEE Int Work Inf Forensics Secur 48–53

  5. Feng JB, Lin IC, Tsai CS, Chu YP (2006) Reversible watermarking: current status and key issues. Int J Netw Secur 2(3):161–170

    Google Scholar 

  6. Filler T, Fridrich J (2011) Minimizing additive distortion in stegannography using syndrome-trellis codes. IEEE Trans Inf Forensics Secur 6(3):920–935

    Article  Google Scholar 

  7. Fridrich J, Kodovsky J (2012) Rich models for steganalysis of digital images. IEEE Trans Inf Forensics Secur 7(3):868–882

    Article  Google Scholar 

  8. Fu DS, Jing ZJ, Zhao SG, Fan J (2014) Reversible data hiding based on prediction-error histogram shifting and EMD mechanism. AEU Int J Electron Commun 68(10):933–974

    Article  Google Scholar 

  9. Hong W (2012) Adaptive reversible data hiding method based on error energy control and histogram shifting. Opt Commun 285(2):101–108

    Article  Google Scholar 

  10. Hsiao JY, Chan KF, Chang JM (2009) Block-based reversible data embedding. Signal Process 89(4):556–569

    Article  MATH  Google Scholar 

  11. Hu Y, Lee HK, Li J (2009) DE-based reversible data hiding with improved overflow location map. IEEE Trans Circuits Syst Video Technol 19(2):250–260

    Article  Google Scholar 

  12. Hwang HJ, Kim HJ, Sachnev V, Joo SH (2010) Reversible watermarking method using optimal histogram pair shifting based on prediction and sorting. KSII Trans Internet Inf Syst 4(4):555–670

    Google Scholar 

  13. Lee CF, Chen HL, Tso HK (2010) Embedding capacity raising in reversible data hiding based on prediction of difference expansion. J Syst Softw 83(10):1864–1872

    Article  Google Scholar 

  14. Lee CC, Wu HC, Tsai CS, Chu YP (2008) Adaptive lossless steganography with centralized difference expansion. Pattern Recogn 141(6):2097–2106

    Article  MATH  Google Scholar 

  15. Li X, Li B, Yang B, Zeng T (2013) General framework to histogram-shifting-based reversible data hiding. IEEE Trans Image Process 22(6)

  16. Li X, Yang B, Zeng T (2011) Efficient reversible watermarking based on adaptive prediction-error expansion and pixel selection. IEEE Trans Image Process 20(12):3524–3533

    Article  MathSciNet  Google Scholar 

  17. Lin CC, Hsueh NL (2008) A lossless data hiding scheme based on three-pixel block differences. Pattern Recogn 41(4):1415–1425

    Article  MATH  Google Scholar 

  18. Lin CC, Tai WL, Chang CC (2008) Multilevel reversible data hiding based on histogram modification of difference images. Pattern Recogn 41(12):3582–3591

    Article  MATH  Google Scholar 

  19. Liu W, Liu G, Dai Y (2014) Efficient alternative form of syndrom-trellis codes for large relative payloads. J Comput Inf Syst 10(21):9037–9044

    Google Scholar 

  20. Lou DC, Hu MC, Li Liu C (2010) Multiple-layer data hiding scheme for medical image. Comput Stand Interfaces 31(2):329–335

    Article  Google Scholar 

  21. Luo L, Chen Z, Chen M, Zeng X, Xiong Z (2010) Reversible image watermarking using interpolation technique. IEEE Trans Inf Forensic Secur 5(1):187–193

    Article  Google Scholar 

  22. Ni Z, Shi YQ, Ansar N, Su W (2006) Reversible data hiding. IEEE Trans Circuits Syst Video Technol 16(3):354–362

    Article  Google Scholar 

  23. Pan Z, Hu S, Ma X, Wang L (2015) Reversible data hiding based on local histogram shifting with multilayer embedding. J f Vis Commun Image Represent 31(8):64–74

    Article  Google Scholar 

  24. Shi YQ, Ni Z, Zou D, Liang C, Xuan G 2004() Lossless data hiding: fundamentals, algorithms, and applications. Proc IEEE ISCAS 33–36

  25. Tai WL, Yeh CM, Chang CC (2009) Reversible data hiding based on histogram modification of pixel differences. IEEE Trans Circuits Syst Video Technol 19(6):906–910

    Article  Google Scholar 

  26. Tian J (2003) Reversible data embedding using a difference expansion. IEEE Trans Circuits Syst Video Technol 16(3):890–896

    Article  Google Scholar 

  27. Tsai P, Hu YC, Yeh HL (2009) Reversible image hiding scheme using predictive coding. Signal Process 89(6):1129–1143

    Article  MATH  Google Scholar 

  28. Tu TY, Wang CH (2015) Reversible data hiding with high payload based on referred frequency for VQ compressed codes index. Signal Process 108:278–287

    Article  Google Scholar 

  29. Wang X, Ding J, Pei Q (2015) A novel reversible data hiding based on pixel value ordering and dynamic pixel block. Inform Sci 310(20):16–35

    Article  Google Scholar 

  30. Weng CY, Yang CH, Fan CI, Liu KL, Sun HM (2013) Histogram-based reversible information hiding improved by prediction with the variance to enhance image quality. In The 8th Asia Joint Conference on Information Security, Seoul, Korea, July 25–26

  31. Yang CH, Tsai MH (2010) Improving histogram-based reversible data hiding by interleaving prediction. IET Image Process 4(4):223–234

    Article  Google Scholar 

  32. Yousefl S, Rablee H, Yousefl E, Ghanbarl M ()2007 Reversible data hiding using histogram sorting and integer transform. Proc IEEE DEST 487–490

  33. Zhao A, Luo H, Lu ZM, Pan JS (2011) Reversible data hiding based on multilevel histogram modification and sequential recovery. AEU Int J Electron Commun 65(10):814–826

    Article  Google Scholar 

  34. Zhao Z, Luo H, Lu ZM, Pan JS (2011) Reversible data hiding base on multilevel histogram modification and sequential recovery. AEU Int J Electron Commun 65:814–826

    Article  Google Scholar 

Download references

Acknowledgement

This research was partially supported by the Ministry of Science and Technology of the Republic of China under the Grants NSC 101-2221-E-153-002-MY2, MOST 103-2221-E-153-005, and MOST 105-2221-E-153-010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Yao Weng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, CH., Weng, CY., Lin, YK. et al. High-fidelity lossless data hiding based on predictors selection. Multimed Tools Appl 76, 23699–23720 (2017). https://doi.org/10.1007/s11042-016-4133-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-4133-4

Keywords

Navigation