Skip to main content
Log in

High capacity data hiding for 3D point clouds based on Static Arithmetic Coding

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

3D meshes are widely used today in very different domains for examples; game, medical diagnostic, CAD (computed aided design) or more recently 3D printing. In this paper we provide a new data hiding method that has a huge capacity, c p=3×c×(n−1) bits where n is the vertex number of the mesh and c is a non null positive integer. Our proposed method synchronizes vertices along a Hamiltonian path, thus we obtained an ordered list of edges. To do this, we have developed a method based on the displacement of a 3D vertex relative to its father in the path. Its new location is computed with static arithmetic coding (SAC) in order to embed data on each coordinate of a vector defined by an edge. Thus, the proposed method is set as a function of the message in order to control the distortions. Moreover, it allows to set the capacity while achieving a better security. Experimental results show that the method has a high capacity and a low distortion while ensuring security of the hidden message.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. developed by 3D Systems

  2. developed in Stanford University

  3. Strategies S.A, MADRAS project, Stanford University, LGMA.

References

  1. Amat P, Puech W, Druon S, Pedeboy J (2010) Lossless 3D steganography based on mst and connectivity modification. Signal Process: Image Commun 25(6):400–412

    Google Scholar 

  2. Bogomjakov A, Gotsman C, Isenburg M (2008) Distortion-free steganography for polygonal meshes. In: Computer Graphics Forum, vol 27, pp 637–642

  3. Bors AG, Luo M (2013) Optimized 3D watermarking for minimal surface distortion. IEEE Trans Image Process 22(5):1822–1835

    Article  Google Scholar 

  4. Cayre F, Macq B (2003) Data hiding on 3-D triangle meshes. IEEE Trans Signal Process 51(4):939–949

    Article  MathSciNet  MATH  Google Scholar 

  5. Chao MW, Lin CH, Yu CW, Lee TY (2009) A high capacity 3D steganography algorithm. IEEE Trans Vis Comput Graph 15(2):274–284

    Article  Google Scholar 

  6. Chen B, Wornell GW (2001) Quantization index modulation methods for digital watermarking and information embedding of multimedia. J VLSI Signal Process Syst Signal, Image Video Technol 27(1/2):7–33

    Article  MATH  Google Scholar 

  7. Cheng YM, Wang CM (2007) An adaptive steganographic algorithm for 3d polygonal meshes. Vis Comput 23(9-11):721–732

    Article  Google Scholar 

  8. Cho J, Prost R, Jung H (2007) An oblivious watermarking for 3D polygonal meshes using distribution of vertex norms. IEEE Trans Signal Process 55(1):142–155

    Article  MathSciNet  Google Scholar 

  9. Cignoni P, Rocchini C, Scopigno R (1996) Metro: Measuring error on simplified surfaces. Technical report

  10. Fridrich J (2009) Steganography in digital media: principles, algorithms, and applications, 1st edn.

    Book  MATH  Google Scholar 

  11. Gao X, Zhang C, Huang Y, Deng Z (2012) A robust high-capacity affine-transformation-invariant scheme for watermarking 3D geometric models. ACM Trans Multimed Comput Commun Appl 8(2S):34:1–34:21

    Article  Google Scholar 

  12. Gurung T, Luffel M, Lindstrom P, Rossignac J (2011) Lr: Compact connectivity representation for triangle meshes. ACM Trans Graph 30(4):67:1–67:8

    Article  Google Scholar 

  13. Hamilton WR (1853) On the icosian calculus. Proc Royal Irish Acad 6:462

    Google Scholar 

  14. Huang Y.-H., Tsai YY (2015) A reversible data hiding scheme for 3d polygonal models based on histogram shifting with high embedding capacity. 3D Res 6(2):1–12

    Article  Google Scholar 

  15. Itier V, Puech W, Gesquière G., Pedeboy JP (2015) Joint synchronization and high capacity data hiding for 3D meshes. Proc. SPIE 9393:05–15

    Google Scholar 

  16. Itier V, Puech W, Pedeboy JP, Gesquiere G (2013) Construction of a unique robust hamiltonian path for a vertex cloud. IEEE Workshop on Multimedia Signal Processing:105–110

  17. Kalker T (2001) Considerations on watermarking security. In: IEEE Workshop on Multimedia Signal Processing, pp 201–206

  18. Kanai S, Date H, Kishinami T (1998) Digital watermarking for 3d polygons using multiresolution wavelet decomposition. In: Proceedings of Sixth IFIP WG 5.2 GEO-6, pp 296–307

  19. Kaveh H, Moin MS (2015) A high-capacity and low-distortion 3d polygonal mesh steganography using surfacelet transform. Secur Commun Netw 8(2):159–167

    Article  Google Scholar 

  20. Kerckhoffs A (1883) La cryptographie militaire. Journal des sciences militaires IX:5–38

  21. Langdon GG (1979) Arithmetic coding. IBM J Res Dev 23:149–162

    Article  MathSciNet  MATH  Google Scholar 

  22. Lavoué G. (2011) A multiscale metric for 3D mesh visual quality assessment. Comput Graph Forum 30(5):1427–1437

    Article  Google Scholar 

  23. Lavoue G, Corsini M (2010) A comparison of perceptually-based metrics for objective evaluation of geometry processing. IEEE Trans Multimed 12(7):636–649

    Article  Google Scholar 

  24. Li MT, Huang NC, Wang CM (2011) A novel high capacity 3D. Steganographic Algorithm 7(3):1055–1074

    Google Scholar 

  25. Li Z, Bors AG (2016) 3d mesh steganalysis using local shape features. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 2144–2148

  26. Perez-Freire L, Perez-Gonzalez F (2009) Spread spectrum watermark security. IEEE Trans Inf Forensic Secur 4(1):2–24

    Article  Google Scholar 

  27. Rondao Alface P, Macq B (2007) From 3D mesh data hiding to 3D shape blind and robust watermarking: A survey. In: Transactions on Data Hiding and Multimedia Security II, vol 4499. Springer, Berlin Heidelberg, pp 91–115

  28. Rossignac J (1999) Edgebreaker: Connectivity compression for triangle meshes. IEEE Trans Vis Comput Graph 5(1):47–61

    Article  MathSciNet  Google Scholar 

  29. Tu SC, Tai WK, Isenburg M, Chang CC (2010) An improved data hiding approach for polygon meshes. Vis Comput 26(9):1177–1181. doi:10.1007/s00371-009-0398-1

    Article  Google Scholar 

  30. Vasic B, Vasic B (2013) Simplification resilient LDPC-coded sparse-QIM watermarking for 3D-meshes. IEEE Trans Multimed 15(7):1532–1542

    Article  Google Scholar 

  31. Wang K, Lavoue G, Denis F, Baskurt A (2007) Hierarchical blind watermarking of 3d triangular meshes. In: IEEE International Conference on Multimedia and Expo, pp 1235–1238

  32. Wang K, Lavoué G., Denis F, Baskurt A (2008) A comprehensive survey on three-dimensional mesh watermarking. IEEE Trans Multimed 10(8):1513–1527

    Article  Google Scholar 

  33. Wang K, Lavoue G, Denis F, Baskurt A (2008) Hierarchical watermarking of semiregular meshes based on wavelet transform. IEEE Trans Inf Forensic Secur 3 (4):620–634

    Article  Google Scholar 

  34. Wang K, Lavoué G., Denis F, Baskurt A (2011) Robust and blind mesh watermarking based on volume moments. Comput Graph 35(1):1–19

    Article  Google Scholar 

  35. Yang Y, Ivrissimtzis I (2014) Mesh discriminative features for 3D steganalysis. Trans Multimed Comput Commun Appl 10(3):27:1–27:13

    Google Scholar 

  36. Yang Y, Peyerimhoff N, Ivrissimtzis I (2013) Linear correlations between spatial and normal noise in triangle meshes. IEEE Trans Vis Comput Graph 19(1):45–55

    Article  Google Scholar 

  37. Yang Y, Pintus R, Rushmeier H, Ivrissimtzis I (2014) A steganalytic algorithm for 3D polygonal meshes. In: IEEE International Conference on Image Processing (ICIP), pp 4782–4786

  38. Yeo BL, Yeung M (1999) Watermarking 3D objects for verification. IEEE Comput Graph Appl 19(1):36–45

    Article  Google Scholar 

  39. Zhang J, Zheng C, Hu X (2013) Triangle mesh compression along the hamiltonian cycle. Vis Comput 29(6-8):717–727

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Itier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Itier, V., Puech, W. High capacity data hiding for 3D point clouds based on Static Arithmetic Coding. Multimed Tools Appl 76, 26421–26445 (2017). https://doi.org/10.1007/s11042-016-4163-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-4163-y

Keywords

Navigation