Skip to main content
Log in

No-reference image contrast measure using image statistics and random forest

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Image quality assessment is very crucial for certain image processing applications. Images can be distorted from multiple sources like a fault in sensors, camera shake, poor lighting, over-exposure etc. All these distortions reduce the visual quality of images. Assessing the quality of images can be done with the use of a reference image of the same scene or without it. Without the use of reference image, quality assessment is a very difficult task. Machine learning approaches are very common in no-reference image quality assessment. No reference strategies are very useful if the type of distortion is known. Contrast assessment is a very important application in image processing as poor contrast images are difficult for automated image processing. In this paper, we propose a no-reference image quality measure for images with respect to contrast using random forest regression and validate the results using standard datasets. Experimental results on standard datasets show that the proposed method demonstrates promising results when compared to existing no-reference techniques and the proposed method shows high correlation values with human opinion scores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ahumada A, Beard BL (1998) 43.1: a simple vision model for inhomogeneous image-quality assessment. In: SID Symposium digest of technical papers, vol 29. Wiley Online Library, pp 1109–1111

  2. Arici T, Dikbas S, Altunbasak Y (2009) A histogram modification framework and its application for image contrast enhancement. IEEE Trans Image Process 18 (9):1921–1935

    Article  MathSciNet  Google Scholar 

  3. Boccignone G, Ferraro M, Caelli T (2001) Encoding visual information using anisotropic transformations. IEEE Trans Pattern Anal Mach Intell 23(2):207–211

    Article  MATH  Google Scholar 

  4. Bong D B L, Khoo B E (2014) Blind image blur assessment by using valid reblur range and histogram shape difference. Signal Process Image Commun 29(6):699–710

    Article  Google Scholar 

  5. Bong D B L, Khoo B E (2015) Objective blur assessment based on contraction errors of local contrast maps. Multimed Tools Appl 74(17):7355–7378

    Article  Google Scholar 

  6. Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140

    MATH  Google Scholar 

  7. Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  MATH  Google Scholar 

  8. Deng C, Ma L, Lin W, Ngan KN Visual signal quality assessment

  9. Du S, Yan Y, Ma Y (2016) Blind image quality assessment with the histogram sequences of high-order local derivative patterns. Digit Signal Process 55:1–12

    Article  Google Scholar 

  10. Eskicioglu A M, Fisher P S (1995) Image quality measures and their performance. IEEE Trans Commun 43(12):2959–2965

    Article  Google Scholar 

  11. Fang Y, Ma K, Wang Z, Lin W, Fang Z, Zhai G (2015) No-reference quality assessment of contrast-distorted images based on natural scene statistics. IEEE Signal Process Lett 22(7):838–842

    Google Scholar 

  12. Ferraro M, Boccignone G (2004) Image contrast enhancement via entropy production. Real-Time Imag 10(4):229–238

    Article  Google Scholar 

  13. Flach P (2012) Machine learning: the art and science of algorithms that make sense of data. Cambridge University Press

  14. Friedman J, Hastie T, Tibshirani R (2001) The elements of statistical learning, vol 1. Springer Series in Statistics Springer, Berlin

  15. Golestaneh S A, Chandler D M (2014) No-reference quality assessment of jpeg images via a quality relevance map. IEEE Signal Process Lett 21(2):155–158

    Article  Google Scholar 

  16. Gonzalez R C, Woods R E (2008) Digital image processing. Nueva Jersey

  17. Group VQE et al (2000) Vqeg, final report from the video quality experts group on the validation of objective models of video quality assessment (mar. 2000). [Online]. Available: http://www.vqeg.org/

  18. Group VQE et al (2003) Final report from the video quality experts group on the validation of objective models of video quality assessment. [Online]. Available: http://www.vqeg.org/

  19. Gu K, Zhai G, Lin W, Liu M (2016) The analysis of image contrast: from quality assessment to automatic enhancement. IEEE Trans Cybern 46(1):284–297

    Article  Google Scholar 

  20. Gu K, Zhai G, Lin W, Yang X, Zhang W (2015) No-reference image sharpness assessment in autoregressive parameter space. IEEE Trans Image Process 24 (10):3218–3231

    Article  MathSciNet  Google Scholar 

  21. Hassen R, Wang Z, Salama M M et al (2013) Image sharpness assessment based on local phase coherence. IEEE Trans Image Process 22(7):2798–2810

    Article  Google Scholar 

  22. Hastie T J, Tibshirani R J, Friedman J H (2011) The elements of statistical learning: data mining, inference, and prediction. Springer

  23. Hess R, Bradley A, Piotrowski L (1983) Contrast-coding in amblyopia i. differences in the neural basis of human amblyopia. Proc R Soc London B: Biol Sci 217 (1208):309–330

    Article  Google Scholar 

  24. Hosking J (1992) Moments or l moments? An example comparing two measures of distributional shape. Amer Stat 46(3):186–189

    Google Scholar 

  25. Hosking J (2006) On the characterization of distributions by their l-moments. J Stat Plan Infer 136(1):193–198

    Article  MathSciNet  MATH  Google Scholar 

  26. Jaiantilal A (2009) Classification and regression by randomforest-matlab. http://code.google.com/p/randomforest-matlab

  27. Kim Y T (1997) Contrast enhancement using brightness preserving bi-histogram equalization. IEEE Trans Consum Electron 43(1):1–8

    Article  Google Scholar 

  28. Larson E C, Chandler D M (2010) Most apparent distortion: full-reference image quality assessment and the role of strategy. J Electron Imag 19(1):011,006–011,006

    Article  Google Scholar 

  29. Leszczuk M, Hanusiak M, Blanco I, Dziech A, Derkacz J, Wyckens E, Borer S (2014) Key indicators for monitoring of audiovisual quality. In: 2014 22nd Signal processing and communications applications conference (SIU). IEEE, pp 2301–2305

  30. Leszczuk M, Hanusiak M, Farias M C, Wyckens E, Heston G (2014) Recent developments in visual quality monitoring by key performance indicators. Multimed Tools Appl:1–23

  31. Li C, Bovik A C, Wu X (2011) Blind image quality assessment using a general regression neural network. IEEE Trans Neural Netw 22(5):793–799

    Article  Google Scholar 

  32. Li L, Lin W, Wang X, Yang G, Bahrami K, Kot A C (2016) No-reference image blur assessment based on discrete orthogonal moments. IEEE Trans Cybern 46(1):39–50

    Article  Google Scholar 

  33. Li L, Zhu H, Yang G, Qian J (2014) Referenceless measure of blocking artifacts by tchebichef kernel analysis. IEEE Signal Process Lett 21(1):122–125

    Article  Google Scholar 

  34. Liu A, Lin W, Narwaria M (2012) Image quality assessment based on gradient similarity. IEEE Trans Image Process 21(4):1500–1512

    Article  MathSciNet  Google Scholar 

  35. Liu X, Tanaka M, Okutomi M (2013) Single-image noise level estimation for blind denoising. IEEE Trans Image Process 22(12):5226–5237

    Article  Google Scholar 

  36. Liu T J, Liu K H, Lin J Y, Lin W, Kuo CCJ (2015) A paraboost method to image quality assessment

  37. Michelson A A (1995) Studies in optics. Courier Corporation

  38. Mittal A, Moorthy A K, Bovik A C (2012) No-reference image quality assessment in the spatial domain. IEEE Trans Image Process 21(12):4695–4708

    Article  MathSciNet  Google Scholar 

  39. Moorthy A K, Bovik A C (2011) Blind image quality assessment: from natural scene statistics to perceptual quality. IEEE Trans Image Process 20(12):3350–3364

    Article  MathSciNet  Google Scholar 

  40. Narwaria M, Lin W (2010) Objective image quality assessment based on support vector regression. IEEE Trans Neural Netw 21(3):515–519

    Article  Google Scholar 

  41. Pei S C, Chen L H (2015) Image quality assessment using human visual dog model fused with random forest. IEEE Trans Image Process 24(11):3282–3292

    Article  MathSciNet  Google Scholar 

  42. Peli E (1990) Contrast in complex images. JOSA A 7(10):2032–2040

    Article  Google Scholar 

  43. Ponomarenko N, Ieremeiev O, Lukin V, Egiazarian K, Jin L, Astola J, Vozel B, Chehdi K, Carli M, Battisti F et al (2013) Color image database tid2013: peculiarities and preliminary results. In: 2013 4th European Workshop on visual information processing (EUVIP). IEEE, , pp 106– 111

  44. Pyatykh S, Hesser J, Zheng L (2013) Image noise level estimation by principal component analysis. IEEE Trans Image Process 22(2):687–699

    Article  MathSciNet  Google Scholar 

  45. Rizzi A, Algeri T, Medeghini G, Marini D (2004) A proposal for contrast measure in digital images. In: Conference on colour in graphics, imaging, and vision, vol 2004. Society for Imaging Science and Technology, pp 187–192

  46. Rizzi A, Simone G, Cordone R (2008) A modified algorithm for perceived contrast in digital images. In: CGIV 2008-Fourth European conference on color in graphics, imaging and vision, pp 249– 252

  47. Saad M A, Bovik A C, Charrier C (2012) Blind image quality assessment: a natural scene statistics approach in the dct domain. IEEE Trans Image Process 21 (8):3339–3352

    Article  MathSciNet  Google Scholar 

  48. Sheskin D J (2003) Handbook of parametric and nonparametric statistical procedures. CRC Press

  49. Sheikh H R, Bovik A C, Cormack L (2005) No-reference quality assessment using natural scene statistics: Jpeg2000. IEEE Trans Image Process 14(11):1918–1927

    Article  Google Scholar 

  50. Sheikh H R, Sabir M F, Bovik A C (2006) A statistical evaluation of recent full reference image quality assessment algorithms. IEEE Trans Image Process 15(11):3440–3451

    Article  Google Scholar 

  51. Simone G, Pedersen M, Hardeberg J Y (2012) Measuring perceptual contrast in digital images. J Vis Commun Image Represent 23(3):491–506

    Article  Google Scholar 

  52. Simone G, Pedersen M, Hardeberg J Y, Rizzi A (2009) Measuring perceptual contrast in a multi-level framework. In: IS&T/SPIE electronic imaging, pp 72,400Q–72,400Q. International Society for Optics and Photonics

  53. Tadmor Y, Tolhurst D (2000) Calculating the contrasts that retinal ganglion cells and lgn neurones encounter in natural scenes. Vis Res 40(22):3145–3157

    Article  Google Scholar 

  54. Tremeau A (2000) Color contrast parameters for analysing image differences. In: CIS proceedings, pp 11–23

  55. Wang S, Ma K, Yeganeh H, Wang Z, Lin W (2015) A patch-structure representation method for quality assessment of contrast changed images. IEEE Signal Process Lett 22(12):2387–2390

    Article  Google Scholar 

  56. Wang Y, Chen Q, Zhang B (1999) Image enhancement based on equal area dualistic sub-image histogram equalization method. IEEE Trans Consum Electron 45 (1):68–75

    Article  Google Scholar 

  57. Wang Z, Bovik A C (2006) Modern image quality assessment. Synthesis Lect Image Video Multimed Process 2(1):1–15

    Article  Google Scholar 

  58. Wang Z, Bovik A C, Sheikh H R, Simoncelli E P (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13 (4):600–612

    Article  Google Scholar 

  59. Wu J, Lin W, Shi G, Liu A (2013) Perceptual quality metric with internal generative mechanism. IEEE Trans Image Process 22(1):43–54

    Article  MathSciNet  Google Scholar 

  60. Xu L, Lin W, Kuo C C J (2015) Visual quality assessment by machine learning. Springer

  61. Xue W, Zhang L, Mou X, Bovik A C (2014) Gradient magnitude similarity deviation: a highly efficient perceptual image quality index. IEEE Trans Image Process 23(2):684–695

    Article  MathSciNet  Google Scholar 

  62. Zhang L, Zhang L, Mou X, Zhang D (2011) Fsim: a feature similarity index for image quality assessment. IEEE Trans Image Process 20(8):2378–2386

    Article  MathSciNet  Google Scholar 

  63. Zuiderveld K (1994) Contrast limited adaptive histogram equalization. In: Graphics gems IV, pp 474–485. Academic Press Professional, Inc

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanjar De.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De, K., Masilamani, V. No-reference image contrast measure using image statistics and random forest. Multimed Tools Appl 76, 18641–18656 (2017). https://doi.org/10.1007/s11042-016-4335-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-4335-9

Keywords

Navigation