Skip to main content
Log in

Symmetric cryptosystem based on skew tent map

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper presents an efficient symmetric cryptosystem based on a non–scaled nor discretized skew tent map (STM); this system is implemented in a USB device interacting with a software module in a personal computer. The USB device uses a dedicated processor that contains a pseudorandom numbers generator (PRNG) to generate uniformly distributed chaotic sequences that satisfy the randomness tests defined in the NIST 800–22SP guide. The software module uses these sequences with substitution and rotation functions to produce cryptograms with confusion and diffusion properties, high level of security, high avalanche effect and high encryption and decryption speed. A variety of analysis and tests has been carried out to prove the security and the validity of the algorithm. Some of the evaluated characteristics are the statistical behavior, correlation, strength against differential attack, entropy, key space, key sensitivity, mutual information, encryption and decryption speed, and randomness test. Additionally, we analyze the structure of the proposed cryptosystem to find some security vulnerabilities; in this part, the analysis are based on known plaintext attack used in the literature on chaotic cryptosystems. In this way, the realized analysis shows that the performance of the proposed algorithm offers a high security level. Mutual information is calculated as evidence of this level of security.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Al-Najjar AM, Al-Najjar HM, et al (2011) Image encryption algorithm based on logistic map and pixel mapping table. In: Proceedings of International Arab Conference on Information Technology, (ACIT 2011): 56–60

  2. Amin M, El-Latif AAA (2010) Efficient modified rc5 based on chaos adapted to image encryption. J Electron Imaging 19(1):013012–013012

    Article  Google Scholar 

  3. Barakat ML, Radwan AG, Salama KN (2011) Hardware realization of chaos based block cipher for image encryption. In: 2011 international conference on microelectronics (ICM). IEEE, pp 1–5

  4. Barakat ML, Mansingka AS, Radwan AG, Salama KN (2014) Hardware stream cipher with controllable chaos generator for colour image encryption. IET Image Process 8(1):33–43

    Article  Google Scholar 

  5. Birkhoff GD (1931) Proof of the ergodic theorem. Proc Natl Acad Sci 17 (12):656–660

    Article  MATH  Google Scholar 

  6. Boriga R, Dăscălescu A C, Priescu I (2014) A new hyperchaotic map and its application in an image encryption scheme. Signal Process Image Commun 29(8):887–901

    Article  Google Scholar 

  7. Chakraborty R (2011) Fpga based cipher design & implementation of recursive oriented block arithmetic and substitution technique (robast). IJACSA Editorial

  8. Chattopadhyay D, Mandal MK, Nandi D (2011) Symmetric key chaotic image encryption using circle map. Indian J Sci Technol 4(5):593–599

    Google Scholar 

  9. Chen H-C, Yen J-C (2003) A new cryptography system and its vlsi realization. J Syst Archit 49(7):355–367

    Article  Google Scholar 

  10. Devaney RL, Devaney L, Devaney L (1989) An introduction to chaotic dynamical systems, vol 13046. Addison-Wesley Reading

  11. François M, Grosges T, Barchiesi D, Erra R (2012) A new image encryption scheme based on a chaotic function. Signal Process Image Commun 27(3):249–259

    Article  MATH  Google Scholar 

  12. Fu C, Chen J-J, Zou H, Meng W-H, Zhan Y-F, Yu Y-W (2012) A chaos-based digital image encryption scheme with an improved diffusion strategy. Opt Express 20(3):2363–2378

    Article  Google Scholar 

  13. Fu C, Huang J-B, Wang N-N, Hou Q-B, Lei W-M (2014) A symmetric chaos-based image cipher with an improved bit-level permutation strategy. Entropy 16 (2):770–788

    Article  Google Scholar 

  14. Ghosal P, Biswas M, Biswas M (2010) A compact fpga implementation of triple-des encryption system with ip core generation and on-chip verification. In: Proceeding of the 2010 international conference on industrial engineering and operation management, Dhaka, Bangladesh

  15. He D, He C, Jiang L-G, Zhu H-W, Hu G-R (2001) Chaotic characteristics of a one-dimensional iterative map with infinite collapses. IEEE Trans Circuits Syst I, Fundam Theory Appl 48(7):900–906

    Article  MathSciNet  MATH  Google Scholar 

  16. Janssens S, Thomas J, Borremans W, Gijsels P, Verbauwhede I, Vercauteren F, Preneel B, Vandewalle J (2001) Hardware/software co-design of an elliptic curve public-key cryptosystem. In: 2001 IEEE workshop on signal processing systems. IEEE, pp 209–216

  17. Kadir A, Hamdulla A, Guo W-Q (2014) Color image encryption using skew tent map and hyper chaotic system of 6th-order cnn. Optik-Int J Light Electron Opt 125(5):1671–1675

    Article  Google Scholar 

  18. Kartalopoulos SV (2008) Annulling traps & fixed traps in chaos cryptography. In: 2008 new technologies mobility and security. IEEE, pp 1–4

  19. Khan M, Shah T (2015) An efficient chaotic image encryption scheme. Neural Comput Applic 26(5):1137–1148

    Article  Google Scholar 

  20. Khan MK, Zhang J, Tian L (2007) Chaotic secure content-based hidden transmission of biometric templates. Chaos, Solitons Fractals 32(5):1749–1759

    Article  Google Scholar 

  21. Khan MK, Alghathbar K, Zhang J (2011) Privacy-preserving and tokenless chaotic revocable face authentication scheme. Telecommun Syst 47(3-4):227–234

    Article  Google Scholar 

  22. Lasota A, Mackey MC (2013) Chaos, fractals, and noise: stochastic aspects of dynamics, vol 97. Springer Science & Business Media

  23. Li J, Liu H (2013) Colour image encryption based on advanced encryption standard algorithm with two-dimensional chaotic map. IET Inf Secur 7(4):265–270

    Article  Google Scholar 

  24. Li C, Li S, Alvarez G, Chen G, Lo K-T (2007) Cryptanalysis of two chaotic encryption schemes based on circular bit shift and xor operations. Phys Lett A 369(1):23–30

    Article  MATH  Google Scholar 

  25. Li S, Li C, Chen G, Bourbakis NG, Lo K-T (2008) A general quantitative cryptanalysis of permutation-only multimedia ciphers against plaintext attacks. Signal Process Image Commun 23(3):212–223

    Article  Google Scholar 

  26. Li C, Zhang LY, Ou R, Wong K-W, Shu S (2012) Breaking a novel colour image encryption algorithm based on chaos. Nonlinear Dyn 70(4):2383–2388

    Article  MathSciNet  Google Scholar 

  27. Liu S, Sun J, Xu Z, Cai Z (2008) An improved chaos-based stream cipher algorithm and its vlsi implementation. In: 4th international conference on networked computing and advanced information management, 2008. NCM’08, vol 2. IEEE, pp 191–197

  28. Ott E (2002) Chaos in dynamical systems. Cambridge University Press

  29. Ou S-C, Chung H-Y, Sung W-T (2006) Improving the compression and encryption of images using fpga-based cryptosystems. Multimedia Tools Appl 28(1):5–22

    Article  Google Scholar 

  30. Pande A, Zambreno J (2010) Design and hardware implementation of a chaotic encryption scheme for real-time embedded systems. In: International conference on signal processing and communications (SPCOM), pp 1–5

  31. Pande A, Zambreno J (2013) A chaotic encryption scheme for real-time embedded systems: design and implementation. Telecommun Syst 52(2):551–561

    Google Scholar 

  32. Pisarchik AN, Zanin M (2012) Chaotic map cryptography and security. Int J Comput Res 19(1):49

    Google Scholar 

  33. Rhouma R, Meherzi S, Belghith S (2009) Ocml-based colour image encryption. Chaos, Solitons Fractals 40(1):309–318

    Article  MATH  Google Scholar 

  34. Rukhin A, Soto J, Nechvatal J, Barker E, Leigh S, Levenson M, Banks D, Heckert A, Dray J, Vo S, et al (2010) Statistical test suite for random and pseudorandom number generators for cryptographic applications, nist special publication

  35. Sakthidasan K, Santhosh Krishna BV (2011) A new chaotic algorithm for image encryption and decryption of digital color images. Int J Inf Educ Technol 1(2):137

    Google Scholar 

  36. Scheicher K, Sirvent VF, Surer P (2016) Dynamical properties of the tent map. J Lond Math Soc:jdv071

  37. Shannon CE (1949) Communication theory of secrecy systems. Bell Syst Tech J 28(4):656–715

    Article  MathSciNet  MATH  Google Scholar 

  38. Stoyanov B, Kordov K (2015) Image encryption using chebyshev map and rotation equation. Entropy 17(4):2117–2139

    Article  MathSciNet  Google Scholar 

  39. Sushko I, Avrutin V, Gardini L (2016) Bifurcation structure in the skew tent map and its application as a border collision normal form. J Differ Equ Appl 22(4):582–629

    MathSciNet  Google Scholar 

  40. Usama M, Khan MK, Alghathbar K, Lee C (2010) Chaos-based secure satellite imagery cryptosystem. Comput Math Appl 60(2):326–337

    Article  MathSciNet  MATH  Google Scholar 

  41. Van Tilborg HCA, Jajodia S (2014) Encyclopedia of cryptography and security. Springer Science & Business Media

  42. Wheeler DD (1989) Problems with chaotic cryptosystems. Cryptologia 13(3):243–250

    Article  Google Scholar 

  43. Wheeler DD, Matthews RAJ (1991) Supercomputer investigations of a chaotic encryption algorithm. Cryptologia 15(2):140–152

    Article  Google Scholar 

  44. Wei J, Liao X, Wong K-W, Xiang T (2006) A new chaotic cryptosystem. Chaos, Solitons Fractals 30(5):1143–1152

    Article  MathSciNet  MATH  Google Scholar 

  45. Wen W (2016) Security analysis of a color image encryption scheme based on skew tent map and hyper chaotic system of 6th-order cnn against chosen-plaintext attack. Multimedia Tools Appl 75(6):3553–3560

    Article  Google Scholar 

  46. Wong K-W, Kwok BS-H, Law W-S (2008) A fast image encryption scheme based on chaotic standard map. Phys Lett A 372(15):2645–2652

    Article  MATH  Google Scholar 

  47. Wu X, Li Y, Kurths J (2015) A new color image encryption scheme using cml and a fractional-order chaotic system. PLoS ONE 10(3):e0119660

    Article  Google Scholar 

  48. Yang D, Liu Z, Zhou J (2014) Chaos optimization algorithms based on chaotic maps with different probability distribution and search speed for global optimization. Commun Nonlinear Sci Numer Simul 19(4):1229–1246

    Article  MathSciNet  Google Scholar 

  49. Yap W-S, Phan R C-W, Yau W-C, Heng S-H (2015) Cryptanalysis of a new image alternate encryption algorithm based on chaotic map. Nonlinear Dyn 80 (3):1483–1491

    Article  MathSciNet  MATH  Google Scholar 

  50. Yavuz E, Yazıcı R, Kasapbaşı MC, Yamaç E (2015) A chaos-based image encryption algorithm with simple logical functions. Comput Electr Eng

  51. Ye R, Guo W (2013) A chaos-based image encryption scheme using multi modal skew tent maps. J Emerg Trends Comput Inf Sci 4(10):800–810

    Google Scholar 

  52. Ye R, Ma Y (2013) A secure and robust image encryption scheme based on mixture of multiple generalized bernoulli shift maps and arnold maps. Int J Comput Netw Inf Secur 5(7):21

    Google Scholar 

  53. Zhang G, Liu Q (2011) A novel image encryption method based on total shuffling scheme. Opt Commun 284(12):2775–2780

    Article  Google Scholar 

  54. Zhang L, Liao X, Wang X (2005) An image encryption approach based on chaotic maps. Chaos, Solitons Fractals 24(3):759–765

    Article  MathSciNet  MATH  Google Scholar 

  55. Zhang Y, Xiao D (2013) Cryptanalysis of s-box-only chaotic image ciphers against chosen plaintext attack. Nonlinear Dyn 72(4):751–756

    Article  MathSciNet  Google Scholar 

  56. Zhang W, Wong K-W, Yu H, Zhu Z-L (2013) An image encryption scheme using reverse 2-dimensional chaotic map and dependent diffusion. Commun Nonlinear Sci Numer Simul 18(8):2066–2080

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors thank the financial support of the TecNM 393.15PD and SIP IPN 20160213 projects. G. Delgado–Gutiérrez (CVU–372164) thanks for the scholarship provided by CONACYT. Technical and computational support from F. Rodríguez–Santos and J. L. Pichardo–Méndez (IPN) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Vázquez-Medina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palacios-Luengas, L., Delgado-Gutiérrez, G., Díaz-Méndez, J.A. et al. Symmetric cryptosystem based on skew tent map. Multimed Tools Appl 77, 2739–2770 (2018). https://doi.org/10.1007/s11042-017-4375-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-4375-9

Keywords

Navigation