Skip to main content
Log in

Training-free referenceless camera image blur assessment via hypercomplex singular value decomposition

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Blur plays an important role in the perception of camera image quality. Generally, blur leads to attenuation of high frequency information and accordingly changes the image energy. Quaternion describes the color information as a whole. Recent researches in quaternion singular value decomposition show that the singular values and singular vectors of the quaternion can capture the distortion of color images, and thus we reasonably suppose that singular values can be utilized to evaluate the sharpness of camera images. Motivated by this, a novel training-free blind quality assessment method considering the integral color information and singular values of the distorted image is proposed to evaluate the sharpness of camera images. The blurred camera image is first converted to LAB color space and divided into blocks. Then pure quaternion is utilized to represent pixels of the blurred camera image and the energy of every block are obtained. Inspired by the human visual system appears to assess image sharpness based on the sharpest region of the image, the local sharpness normalized energy is defined as the sharpness score of the blurred camera image. Experimental results have demonstrated the effectiveness of the proposed metric compared with popular sharpness image quality metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Attar A, Shahbahrami A, Rad RM (2016) Image quality assessment using edge based features. Multimed Tools Appl 75(12):1–16

    Article  Google Scholar 

  2. Bahrami K, Kot AC (2014) A fast approach for no-reference image sharpness assessment based on maximum local variation. IEEE Signal Process Lett 21(6):751–755

    Article  Google Scholar 

  3. Ciancio A, Da CA, Da SE, Said A, Samadani R, Obrador P (2011) No-reference blur assessment of digital pictures based on multifeature classifiers. IEEE Trans Image Process 20(1):64–75

    Article  MathSciNet  MATH  Google Scholar 

  4. Doearmann D, Kang L, Kumar J, Ye P (2012) Unsupervised feature learning framework for no-reference image quality assessment. In: Proc. IEEE Int Conf Computer Vision Pattern Recognition, vol 157, pp 1098–1105

  5. Ferzli R, Karam LJ (2009) A no-reference objective image sharpness metric based on the notion of just noticeable blur (jnb). IEEE Trans Image Process 18(4):717–728

    Article  MathSciNet  MATH  Google Scholar 

  6. Gu K, Wang S, Yang H, Lin W, Zhai G, Yang X, Zhang W (2016) Saliency-guided quality assessment of screen content images. IEEE Trans Multimed 18 (6):1098–1110

    Article  Google Scholar 

  7. Gu K, Zhai G, Lin W, Liu M (2016) The analysis of image contrast: from quality assessment to automatic enhancement. IEEE Trans Cybern 46(1):284–297

    Article  Google Scholar 

  8. Gu K, Zhai G, Lin W, Yang X, Zhang W (2015) No-reference image sharpness assessment in autoregressive parameter space. IEEE Trans Image Process 24 (10):3218–31

    Article  MathSciNet  Google Scholar 

  9. Gu K, Zhai G, Lin W, Yang X, Zhang W (2015) Visual saliency detection with free energy theory. IEEE Signal Process Lett 22(10):1552–1555

    Article  Google Scholar 

  10. Gu K, Zhai G, Yang X, Zhang W (2014) Hybrid no-reference quality metric for singly and multiply distorted images. IEEE Trans Broadcast 60(3):555–567

    Article  Google Scholar 

  11. Gu K, Zhai G, Yang X, Zhang W (2015) Using free energy principle for blind image quality assessment. IEEE Trans Multimed 17(1):50–63

    Article  Google Scholar 

  12. Gu K, Zhai G, Yang X, Zhang W, Chen CW (2015) Automatic contrast enhancement technology with saliency preservation. IEEE Trans Circ Syst Vid Technol 25(9):1480–1494

    Article  Google Scholar 

  13. Hamilton WR (1844) Ii. on quaternions; or on a new system of imaginaries in algebra. The London Edinburgh, Dublin Philos Mag J Sci 25(163):10–13

    Article  Google Scholar 

  14. Hassen R, Wang Z, Salama MMA (2013) Image sharpness assessment based on local phase coherence. IEEE Trans Image Process 22(7):2798–810

    Article  Google Scholar 

  15. Huang Y, Chen X, Ding X (2016) A harmonic means pooling strategy for structural similarity index measurement in image quality assessment. Multimed Tools Appl 75(5):2769–2780

    Article  Google Scholar 

  16. Kolaman A, Yadid-Pecht O (2012) Quaternion structural similarity: a new quality index for color images. IEEE Trans Image Process 21(4):1526–1536

    Article  MathSciNet  MATH  Google Scholar 

  17. Li J, Li X, Yang B, Sun X (2016) Segmentation-based image copy-move forgery detection scheme. IEEE Trans Inf Forens Secur 10(3):507–518

    Google Scholar 

  18. Li L, Cai H, Zhang Y, Lin W, Kot A C, Sun X (2016) Sparse representation-based image quality index with adaptive sub-dictionaries. IEEE Trans Image Process 25(8):3775–3786

    MathSciNet  Google Scholar 

  19. Li L, Lin W, Wang X, Yang G, Bahrami K, Kot AC (2016) No-reference image blur assessment based on discrete orthogonal moments. IEEE Trans Cybern 46(1):39–50

    Article  Google Scholar 

  20. Li L, Wu D, Wu J, Li H, Lin W, Kot AC (2016) Image sharpness assessment by sparse representation. IEEE Trans Multimed 18(6):1085–1097

    Article  Google Scholar 

  21. Li L, Zhou Y, Lin W, Wu J, Zhang X, Chen B (2016) No-reference quality assessment of deblocked images. Neurocomputing 177:572–584

    Article  Google Scholar 

  22. Liu H, Klomp N, Heynderickx I (2010) A no-reference metric for perceived ringing artifacts in images. IEEE Trans Circ Syst Vid Technol 20(4):529–539

    Article  Google Scholar 

  23. Marziliano P, Dufaux F, Winkler S, Ebrahimi T (2004) Perceptual blur and ringing metrics: application to jpeg2000. Signal Process Image Commun 19(2):163–172

    Article  Google Scholar 

  24. Mittal A, Moorthy AK, Bovik AC (2012) No-reference image quality assessment in the spatial domain. IEEE Trans Image Process 21(12):4695–708

    Article  MathSciNet  MATH  Google Scholar 

  25. Mittal A, Soundararajan R, Bovik AC (2013) Making a completely blind image quality analyzer. IEEE Signal Process Lett 20(3):209–212

    Article  Google Scholar 

  26. Moorthy AK, Bovik AC (2010) A two-step framework for constructing blind image quality indices. IEEE Signal Process Lett 17(5):513–516

    Article  Google Scholar 

  27. Narvekar ND, Karam LJ (2011) A no-reference image blur metric based on the cumulative probability of blur detection (cpbd). IEEE Trans Image Process 20 (9):2678–2683

    Article  MathSciNet  MATH  Google Scholar 

  28. Narwaria M, Lin W (2012) Svd-based quality metric for image and video using machine learning. IEEE Trans Syst Man Cybern Part B 42(2):347–364

    Article  Google Scholar 

  29. Narwaria M, Lin W, McLoughlin IV, Emmanuel S, Chia LT (2012) Fourier transform-based scalable image quality measure. IEEE Trans Image Process 21 (8):3364–3377

    Article  MathSciNet  MATH  Google Scholar 

  30. Oh TH, Tai YW, Bazin JC, Kim H, Kweon IS (2016) Partial sum minimization of singular values in robust PCA: algorithm and applications. IEEE Trans Pattern Anal Mach Intell 38(4):744–758

    Article  Google Scholar 

  31. Pan Z, Lei J, Zhang Y, Sun X (2016) Fast motion estimation based on content property for low-complexity h.265/hevc encoder. IEEE Trans Broadcast 1–10

  32. Patent (2006) Image-quality estimation based on supercomplex singular-value decomposition, publ. nr.: CN1897634 A. https://www.google.com/patents/CN1897634A?cl=en

  33. Qureshi MA, Deriche M, Beghdadi A (2016) Quantifying blur in colour images using higher order singular values. Electrons Lett 52(21):1755–1757

    Article  Google Scholar 

  34. Saad MA, Bovik AC, Charrier C (2012) Blind image quality assessment: a natural scene statistics approach in the dct domain. IEEE Trans Image Process 21 (8):3339–3352

    Article  MathSciNet  MATH  Google Scholar 

  35. Sang QB, Wu XJ, Li CF, Lu Y (2014) Blind image blur assessment using singular value similarity and blur comparisons. Plos One 9(9):e108073–e108073

    Article  Google Scholar 

  36. Sang Q, Qi H, Wu X, Li C, Bovik AC (2014) No-reference image blur index based on singular value curve. J Vis Commun Image Represent 25(7):1625–1630

    Article  Google Scholar 

  37. Sangwine SJ, Le Bihan N (2006) Quaternion singular value decomposition based on bidiagonalization to a real or complex matrix using quaternion householder transformations. Appl Math Comput 182(1):727–738

    MathSciNet  MATH  Google Scholar 

  38. Schanda J (2007) Colorimetry. Wiley-Interscience, p 61, ISBN 978-0-470-04904-4

  39. Shnayderman A, Gusev A, Eskicioglu AM (2006) An svd-based grayscale image quality measure for local and global assessment. IEEE Trans Image Process 15 (2):422–429

    Article  Google Scholar 

  40. Soundararajan R, Bovik AC (2012) Rred indices: reduced reference entropic differencing for image quality assessment. IEEE Trans Image Process 21(2):517–526

    Article  MathSciNet  MATH  Google Scholar 

  41. Su B, Lu S, Tan C (2011) Blurred image region detection and classification. In: Proc. the 19th ACM international conference on multimedia, pp 1397–1400

  42. Tang L, Li L, Gu K, Sun X, Zhang J (2016) Blind quality index for camera images with natural scene statistics and patch-based sharpness assessment. J Vis Commun Image Represent 40:335–344

    Article  Google Scholar 

  43. Torkamani-Azar F, Amirshahi SA (2007) A new approach for image quality assessment using SVD. In: Proc. IEEE int. symp. signal processing and its applications, pp 1–4

  44. VQEG (2000) Final report from the video quality experts group on the validation of objective models of video quality assessment, http://www.vqeg.org/

  45. Vu PV, Chandler DM (2012) A fast wavelet-based algorithm for global and local image sharpness estimation. IEEE Signal Process Lett 19(7):423–426

    Article  Google Scholar 

  46. Vu CT, Phan TD, Chandler DM (2012) S3: a spectral and spatial measure of local perceived sharpness in natural images. IEEE Trans Image Process 21(3):934–945

    Article  MathSciNet  MATH  Google Scholar 

  47. Xia Z, Wang X, Zhang L, Qin Z, Sun X, Ren K (2016) A privacy-preserving and copy-deterrence content-based image retrieval scheme in cloud computing. IEEE Trans Inf Forens Secur 11(11):2594–2608

    Article  Google Scholar 

  48. Yong W, Yuqing W, Xiaohui Z (2016) Complex number-based image quality assessment using singular value decomposition. IET Image Process 10(2):113–120

    Article  Google Scholar 

  49. Zhang Y, Chandler DM (2013) No-reference image quality assessment based on log-derivative statistics of natural scenes. J Electron Imag

  50. Zhang L, Zhang L, Bovik AC (2015) A feature-enriched completely blind image quality evaluator. IEEE Trans Image Process 24(8):2579–91

    Article  MathSciNet  Google Scholar 

  51. Zhou Z, Wang Y, Wu QM, Yang C, Sun X (2017) Effective and efficient global context verification for image copy detection. IEEE Trans Inf Forens Secur 12 (1):48–63

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China under Grant 61379143, the Fundamental Research Funds for the Central Universities under Grant 2015QNA66, Science and Technology Planning Project of Nantong under Grant BK2014022 and the Qing Lan Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiansheng Qian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, L., Li, Q., Li, L. et al. Training-free referenceless camera image blur assessment via hypercomplex singular value decomposition. Multimed Tools Appl 77, 5637–5658 (2018). https://doi.org/10.1007/s11042-017-4477-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-4477-4

Keywords

Navigation