Skip to main content
Log in

Striped-texture image segmentation with application to multimedia security

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In today’s rapid growth of volume of multimedia data, security is important yet challenging problem in multimedia applications. Image, which covers the highest percentage of the multimedia data, it is very important for multimedia security. Image segmentation is utilized as a fundamental preprocessing of various multimedia applications such as surveillance for security by breaking a given image into multiple salient regions. In this paper, we present a new image segmentation approach based on frequency-domain filtering for images with stripe texture, and generalize it to lattice fence images. Our method significantly reduces the impact of stripes on segmentation performance. The approach proposed in this paper consists of three phases. Given the images, we weaken the effect of stripe texture by filtering in the frequency domain automatically. Then, structure-preserving image smoothing is employed to remove texture details and extract the main image structures. Last, we use an effective threshold method to produce segmentation results. Our method achieves very promising results for the test image dataset and could benefit a number of new multimedia applications such as public security.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bao B-K, Liu G, Hong R, Yan S, Changsheng X (2013) General subspace learning with corrupted training data via graph embedding. IEEE Trans Image Process 22(11):4380–4393

    Article  MathSciNet  MATH  Google Scholar 

  2. Bouali M, Ladjal S (2011) Toward optimal destriping of modis data using a unidirectional variational model. IEEE Trans Geosci Remote Sens 49(8):2924–2935

    Article  Google Scholar 

  3. Boykov Y, Jolly M-P (2001) Interactive graph cuts for optimal boundary and region segmentation of objects in nd images. In: Proceedings of Eighth IEEE international conference on computer vision. Vancouver, pp 105–112

  4. Chen J, Shao Y, Guo H, Wang W, Zhu B (2003) Destriping cmodis data by power filtering. IEEE Trans Geosci. Remote Sens 41(9):2119–2124

    Article  Google Scholar 

  5. Comaniciu D, Meer P (2002) Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell 24(5):603–619

    Article  Google Scholar 

  6. Fang M-Y, Kuan Y-H, Kuo C-M (2012) Effective image retrieval techniques based on novel salient region segmentation and relevance feedback. Multimed Tools Appl 57:501–525

    Article  Google Scholar 

  7. Grady L, Singh V, Kohlberger T, Alcino C, Bahlmann C (2012) Automatic segmentation of unknown objects, with application to baggage security. In: Proceedings of IEEE European conference on computer vision. Firenze, pp 430–444

  8. Hong C, Zhu J, Jun Y, Cheng J, Chen X (2014) Realtime and robust object matching with a large number of templates. Multimed Tools Appl 75:1459–1480

    Article  Google Scholar 

  9. Karacan L, Erdem E, Erdem A (2013) Structure-preserving image smoothing via region covariances. ACM Trans Graph 32:6

    Article  Google Scholar 

  10. Li T, Chang H, Wang M, Ni B, Hong R, Yan S (2015) Crowded scene analysis: a survey. IEEE Trans Circ Syst Video Technol 25(3):367–386

    Article  Google Scholar 

  11. Lin C, Pun C-M, Huang G (2016) Highly non-rigid video object tracking using segment-based object candidates. Multimed Tools Appl

  12. Mnch B, Trtik P, Marone F, Stampanoni M (2009) Stripe and ring artifact removal with combined wavelet - fourier filtering. Opt Express 17(10):8567–8591

    Article  Google Scholar 

  13. Pande-Chhetri R, Abd-Elrahman A (2011) De-striping hyperspectral imagery using wavelet transform and adaptive frequency domain filtering. ISPRS J Photogramm Remote Sens 66(5):620– 636

    Article  Google Scholar 

  14. Rakwatin P, Takeuchi W, Yasuoka Y (2009) Restoration of aqua modis band 6 using histogram matching and local least squares fitting. IEEE Trans Geosci Remote Sens 47(2):613–627

    Article  Google Scholar 

  15. Sang J, Changsheng X, Liu J (2012) User-aware image tag refinement via ternary semantic analysis. IEEE Trans Multimed 14(3-2):883–895

    Article  Google Scholar 

  16. Shen H, Zhang L (2009) A map-based algorithm for destriping and inpainting of remotely sensed images. IEEE Trans Geosci Remote Sens 47(5):1492–1502

    Article  Google Scholar 

  17. Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22(8):888–905

    Article  Google Scholar 

  18. Tang J, Tao D, Qi G-J, Huet B (2014) Social media mining and knowledge discovery. Multimed Syst 20(6):633–634

    Article  Google Scholar 

  19. Vese L, Chan T (2002) A multiphase level set framework for image segmentation using the mumford and shah model. Int J Comput Vis 50(3):271–293

    Article  MATH  Google Scholar 

  20. Wang W, Yan Y, Zhang L, Hong R, Sebe N (2016) Collaborative sparse coding for multi-view action recognition. IEEE Multimed Mag 23(4):80–87

    Article  Google Scholar 

  21. Wegener M (1990) Destriping multiple sensor imagery by improved histogram matching. Int J Remote Sens 11(5):859–875

    Article  Google Scholar 

  22. Xu L, Yan Q, Xia Y, Jia J (2012) Structure extraction from texture via relative total variation. ACM Trans Graph 31:6

    Google Scholar 

  23. Yi C, Yan L, Tao W, Zhong S (2016) Remote sensing image stripe noise removal: from image decomposition perspective. IEEE Trans Geosci Remote Sens 54 (12):7018–7031

    Article  Google Scholar 

  24. Zhang F, Dai L, Xiang S, Zhang X (2015) Segment graph based image filtering: fast structure-preserving smoothing. In: Proceedings of IEEE conference on computer vision and pattern recognition. Boston, pp 361–369

  25. Zhang L, Hong R, Gao Y, Ji R, Dai Q, Li X (2016) Image categorization by learning a propagated graphlet path. IEEE Trans Neural Netw Learn Syst 27(3):674–685

    Article  MathSciNet  Google Scholar 

  26. Zhang L, Li X, Nie L, Yan Y, Zimmermann R (2016) Semantic photo retargeting under noisy image labels. ACM Trans Multimed Comput Commun Appl 12 (3):37

    Article  Google Scholar 

  27. Zhang L, Li X, Nie L, Yi Y, Xia Y (2016) Weakly supervised human fixations prediction. IEEE Trans CyBern 46(1):258–269

    Article  Google Scholar 

  28. Zhang L, Song M, Li N, Bu J, Chen C (2009) Feature selection for fast speech emotion recognition. In: Proceedings of ACM international conference on multimedia. Beijing, pp 753– 756

  29. Zhang L, Song M, Liu Z, Liu X, Bu J, Chen C (2013) Probabilistic graphlet cut: exploring spatial structure cue for weakly supervised image segmentation. In: Proceedings of IEEE conference on computer vision and pattern recognition. Portland, pp 1908–1915

  30. Zhang L, Song M, Qi Z, Liu X, Jiajun B, Chen C (2013) Probabilistic graphlet transfer for photo cropping. IEEE Trans Image Process 21(5):2887–2897

    MathSciNet  MATH  Google Scholar 

  31. Zhang L, Wang M, Hong R, Yin B-C, Li X (2016) Large-scale aerial image categorization using a multitask topological codebook. IEEE Trans CyBern 46 (2):535–545

    Article  Google Scholar 

  32. Zhang L, Yang Y, Wang M, Hong R, Nie L, Li X (2016) Detecting densely distributed graph patterns for fine-grained image categorization. IEEE Trans Image Process 25(2):553–565

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhang L, Yi Y, Gao Y, Wang C, Yi Y, Li X (2014) A probabilistic associative model for segmenting weakly-supervised images. IEEE Trans Image Process 23(9):4150–4159

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhang Q, Shen X, Xu L, Jia J (2014) Rolling guidance filter. In: Proceedings of European conference on computer vision. Zurich, pp 815–830

  35. Zhang Z, Shi Z, Guo W, Huang S (2005) Adaptively image de-striping through frequency filtering. In: ICO20: Opt. Inf. Proc., Proc. SPIE: 6027, pp 989–996

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant number 61472348).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinxiong Ren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, J., Chen, G., Li, X. et al. Striped-texture image segmentation with application to multimedia security. Multimed Tools Appl 78, 26965–26978 (2019). https://doi.org/10.1007/s11042-017-4479-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-4479-2

Keywords

Navigation