Skip to main content

Advertisement

Log in

An efficient algorithm for mass detection and shape analysis of different masses present in digital mammograms

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The present study introduces an efficient algorithm for automatic segmentation and detection of mass present in the mammograms. The problem of over and under-segmentation of low-contrast mammographic images has been solved by applying preprocessing on original mammograms. Subtraction operation performed between enhanced and enhanced inverted mammogram significantly highlights the suspicious mass region in mammograms. The segmentation accuracy of suspicious region has been improved by combining wavelet transform and fast fuzzy c-means clustering algorithm. The accuracy of mass segmentation has been quantified by means of Jaccard coefficients. Better sensitivity, specificity, accuracy, and area under the curve (AUC) are observed with support vector machine using radial basis kernel function. The proposed algorithm is validated on Mini-Mammographic Image Analysis Society (MIAS) and Digital Database for Screening Mammography (DDSM) datasets. Highest 91.76% sensitivity, 96.26% specificity, 95.46% accuracy, and 96.29% AUC on DDSM dataset and 94.63% sensitivity, 92.74% specificity, 92.02% accuracy, and 95.33% AUC on MIAS dataset are observed. Also, shape analysis of mass is performed by using moment invariant and Radon transform based features. The best results are obtained with Radon based features and achieved accuracies for round, oval, lobulated, and irregular shape of mass are 100%, 70%, 64%, and 96%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. American College Radiology (1998) BI-RADS Committee. Breast imaging reporting and data system. American College of Radiology, Reston

  2. Bellotti R, De Carlo F, Tangaro S, Gargano G, Maggipinto G, Castellano M, Massafra R, Cascio D, Fauci F, Magro R, Raso G (2006) A completely automated CAD system for mass detection in a large mammographic database. Med phy 33:3066–3075. doi:10.1118/1.2214177

    Article  Google Scholar 

  3. Bocchi L, Nori J (2007) Shape analysis of micro-calcifications using radon transform. Med Eng Phy 29:691–698. doi:10.1016/j.medengphy.2006.07.012

    Article  Google Scholar 

  4. Cao A, Song Q, Yang X, Wang L (2004) Breast mass segmentation based on information theory. In: Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th IEEE International Conference vol. 3, pp 758–761. Doi:10.1016/j.cviu.2007.07.004

  5. Cascio D, Fauci F, Magro R, Raso G, Bellotti R, De Carlo F, Tangaro S, De Nunzio G, Quarta M, Forni G et al (2006) Mammogram segmentation by contour searching and mass lesions classification with neural network. IEEE Trans Nucl Sci 53:2827–2833. doi:10.1109/TNS.2006.878003

    Article  Google Scholar 

  6. Che FN, Fairhust MC, Wells CP, Hanson M (1996) Evaluation of a two-stage model for detection of abnormalities in digital mammograms. In: IEEE Colloquium Digest Mammography, pp 13–1. Doi: 10.1049/ic:19960496

  7. Cheetham AH, Hazel JE (1969) Binary (presence-absence) similarity coefficients. J Paleontol 43(5):1130–1136

    Google Scholar 

  8. Christoyianni I, Dermatas E, Kokkinakis G (2000) Fast detection of masses in computer-aided mammography. Sig Proc Mag 17:54–64. doi:10.1109/79.814646

    Article  Google Scholar 

  9. Constantinidis AS, Fairhust MC, Deravi F, Hanson M, Wells CP, Chapman-Jones C (1999) Evaluating classification strategies for detection of circumscribed masses in digital mammograms. In: International Conference on Image Processing and its Application. pp 435–439. Doi:10.1049/cp:19990359

  10. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297

    MATH  Google Scholar 

  11. Deans SR (2007) The Radon transform and some of its applications. Courier Corporation, North Chelmsford

  12. Do Nascimento MZ, Martins AS, Neves LA, Ramos RP, Flores EL, Carrijo GA (2013) Classification of masses in mammographic image using wavelet domain features and polynomial classifier. Expert Sys Appl 40:6213–6221. doi:10.1016/j.eswa.2013.04.036

    Article  Google Scholar 

  13. Dominguez AR, Nandi AK (2009) Toward breast cancer diagnosis based on automated segmentation of masses in mammograms. Pattern Recog 42:1138–1148. doi:10.1016/j.patcog.2008.08.006

    Article  Google Scholar 

  14. Ganesan K, Acharya UR, Chua CK, Min LC, Abraham KT, Ng KH (2013) Computer-aided breast cancer detection using mammograms: a review. IEEE Rev Biomed Eng 6:77–98. doi:10.1109/ICoCS.2014.7060995

    Article  Google Scholar 

  15. Gonzalez RC, Woods RE (2008) Digital Image Processing, 3rd edn. Pearson Prentice Hall, Upper Saddle River

    Google Scholar 

  16. Haralick RM, Shanmugam K, Dinstein IH (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 6:610–621. doi:10.1109/TSMC.1973.4309314

    Article  Google Scholar 

  17. Hu MK (1962) Visual pattern recognition by moment invariants. IRE Trans Inf Theory 8:179–187

    MATH  Google Scholar 

  18. Hu K, Gao X, Li F (2011) Detection of suspicious lesions by adaptive thresholding based on multi-resolution analysis in mammograms. IEEE Trans Instrum Meas 60:462–472. doi:10.1109/TIM.2010.2051060

    Article  Google Scholar 

  19. Huo Z, Giger ML, Vyborny CJ, Bick U, Lu P, Wolverton DE, Schmidt RA (1995) Analysis of spiculation in the computerized classification of mammographic masses. Med Phys 22:1569–1579. doi:10.1118/1.597626

    Article  Google Scholar 

  20. Jen CC, Yu SS (2015) Automatic detection of abnormal mammograms in mammographic images. Expert Syst Appl 42:3048–3055. doi:10.1016/j.eswa.2014.11.061

    Article  Google Scholar 

  21. Jolliffe I (2002) Principal component analysis. John Wiley & Sons, Ltd., New York

    MATH  Google Scholar 

  22. Kom G, Tiedeu A, Kom M (2007) Automated detection of masses in mammograms by local adaptive thresholding. Comput Biol Med 37:37–48. doi:10.1016/j.compbiomed.2005.12.004

    Article  Google Scholar 

  23. Kupinski MA, Giger ML (1998) Automated seeded lesion segmentation on digital mammograms. IEEE Trans Med Imag 17:510–517. doi:10.1109/42.730396

    Article  Google Scholar 

  24. Kurt B, Nabiyev VV, Turhan K (2014) A novel automatic suspicious mass regions identification using Havrda & Charvat entropy and Otsu's N thresholding. Comput Methods Prog Biomed 114:349–360. doi:10.1016/j.cmpb.2014.02.014

    Article  Google Scholar 

  25. Llado X, Oliver A, Freixenet J, Mart R, Mart J (2009) A textural approach for mass false positive reduction in mammography. Comput Med Imaging Graph 33:415–422. doi:10.1016/j.compmedimag.2009.03.007

    Article  Google Scholar 

  26. Materka A, Strzelecki M et al (1998) Texture analysis methods–a review. Technical University of Lodz, Institute of Electronics, COST B11 Report, Brussels, pp 9–11

    Google Scholar 

  27. Muramatsu C, Hara T, Endo T, Fujita H (2016) Breast mass classification on mammograms using radial local ternary patterns. Comput Biol Med 72:43–53. doi:10.1016/j.compbiomed.2016.03.007

    Article  Google Scholar 

  28. Ng SL, Bischof WF (1992) Automated detection and classification of breast tumors. Comput Biomed Res 25:218–237. doi:10.1016/0010-4809(92)90040-H

    Article  Google Scholar 

  29. Nguyen TM, Rangayyan RM (2006) Shape analysis of breast masses in mammograms via the fractal dimension. In: Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005. 27th Annual International Conference pp 3210–3213. doi:10.1109/IEMBS.2005.1617159

  30. Nunes AP, Silva AC, de Paiva AC (2010) Detection of masses in mammographic images using geometry, Simpson’s diversity index and SVM. Int J Signal Imaging Syst Eng 3:43–51. doi:10.1504/IJSISE.2010.034631

    Google Scholar 

  31. Ojala T, Pietikainen M, Maenpaa T (2002) Multi-resolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24:971–987. doi:10.1109/TPAMI.2002.1017623

    Article  MATH  Google Scholar 

  32. Oliveira Martins L, Silva AC, De Paiva AC, Gattass M (2009) Detection of breast masses in mammogram images using growing neural gas algorithm and Ripley’s K function. J Signal Process Syst 55:77–90. doi:10.1007/s11265-008-0209-3

    Article  Google Scholar 

  33. Oliver A, Freixenet J, Martí J, Pérez E, Pont J, Denton ERE, Zwiggelaar R (2010) A review of automatic mass detection and segmentation in mammographic images. Med Image Anal 14:87–110. doi:10.1016/j.media.2009.12.005

    Article  Google Scholar 

  34. Pal NR, Bezdek JC (1995) On cluster validity for the fuzzy c-means model. IEEE Trans Fuzzy Syst 3:370–379. doi:10.1109/91.413225

    Article  Google Scholar 

  35. Pereira DC, Ramos RP, Do Nascimento MZ (2014) Segmentation and detection of breast cancer in mammograms combining wavelet analysis and genetic algorithm. Comput Methods Prog Biomed 114:88–10. doi:10.1016/j.cmpb.2014.01.014

    Article  Google Scholar 

  36. Petrick N, Chan HP, Sahiner B, Wei D (1996a) An adaptive density-weighted contrast enhancement filter for mammographic breast mass detection. IEEE Trans Med Imaging 15:59–67. doi:10.1109/42.481441

    Article  Google Scholar 

  37. Petrick N, Chan HP, Wei D, Sahiner B, Helvie MA, Adler DD (1996b) Automated detection of breast masses on mammograms using adaptive contrast enhancement and texture classification. Med Phys 23:1685–1696. doi:10.1118/1.597756

    Article  Google Scholar 

  38. Rose C, Turi D, Williams A, Wolstencroft K, Taylor C (2006) Web services for the ddsm and digital mammography research. In: Digital Mammography pp 376–383

  39. Sampaio WB et al (2011) Detection of masses in mammogram images using CNN, geostatistic functions and SVM. Comput Biol Med 41:653–664. doi:10.1016/j.compbiomed.2005.12.004

    Article  Google Scholar 

  40. de Sampaio WB, Silva AC, de Paiva AC, Gattass M (2015) Detection of masses in mammograms with adaption to breast density using genetic algorithm, phylogenetic trees, LBP and SVM. Expert Syst Appl 42:8911–8928. doi:10.1016/j.eswa.2015.07.046

    Article  Google Scholar 

  41. Sharma S, Khanna P (2015) Computer-aided diagnosis of malignant mammograms using Zernike moments and SVM. J Digit Imaging 28:77–90. doi:10.1007/s10278-014-9719-7

    Article  Google Scholar 

  42. Suckling J, Parker J, Dance D, Astley S, Hutt I, Boggis C, Ricketts I, Stamatakis E, Cerneaz N, Kok S, Taylor P (1994) The mammographic image analysis society digital mammogram database. Excerpta Med Int Congr Ser 1069:375–378

  43. Surendiran B, Vadivel A (2012) Mammogram mass classification using various geometric shape and margin features for early detection of breast cancer. Int J Med Eng Inf 4:36–54. doi:10.1504/IJMEI.2012.045302

    Google Scholar 

  44. Tai SC, Chen ZS, Tsai WT (2014) An automatic mass detection system in mammograms based on complex texture features. IEEE J Biomed Health Inform 18:618–627. doi:10.1109/JBHI.2013.2279097

    Article  Google Scholar 

  45. Tang X (1998) Texture information in run length matrices. IEEE Trans Image Process 7:1602–1609. doi:10.1109/83.725367

    Article  Google Scholar 

  46. Wang D, Shi L, Heng PA (2009) Automatic detection of breast cancers in mammograms using structured support vector machines. Neurocomputing 72:3296–3302. doi:10.1016/j.neucom.2009.02.015

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanchan Lata Kashyap.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashyap, K.L., Bajpai, M.K. & Khanna, P. An efficient algorithm for mass detection and shape analysis of different masses present in digital mammograms. Multimed Tools Appl 77, 9249–9269 (2018). https://doi.org/10.1007/s11042-017-4751-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-4751-5

Keywords

Navigation