Skip to main content
Log in

New semantic descriptor construction for facial expression recognition based on axiomatic fuzzy set

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper, we propose a new semantic descriptor based on axiomatic fuzzy set (AFS) to describe facial expressions. The new descriptor has two advantages: The first one is that it does not depend on priori-knowledge, when one uses it to construct semantic concepts. According to the distribution of feature data, one can quickly establish semantic concepts using the fuzzy membership degree. The second one is that the descriptor can describe complex features by implementing operation on semantic concepts. The developed descriptor can provide variations and relations of expression features. Finally, we implement our method on FEI and CK+ database, and make semantic interpretations for various expressions. Meanwhile, the performance is evaluated with the state-of-the-art methods such as C4.5, Bayes, Decision Table, Cart and Reduced error pruning tree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. An G, Liu S, Jin Y, Ruanc Q, Lu S (2014) Facial expression recognition based on discriminant neighborhood preserving nonnegative tensor factorization and ELM. Mathematical Problems in Engineering 2014:10. doi:10.1155/2014/390328

  2. Chakraborty A, Konar A, Chakraborty UK, Chatterjee A (2009) Emotion recognition from facial expressions and its control using fuzzy logic. IEEE Trans Syst Man Cybern Part A Syst Hum 39:726–743

    Article  Google Scholar 

  3. Cheng S-C, Chen M-Y, Chang H-Y, Chou T-C (2007) Semantic-based facial expression recognition using analytical hierarchy process. Expert Syst Appl 33(1):86–95

    Article  Google Scholar 

  4. Chew SW, Lucey S, Lucey P, Sridharan S, Conn JF (2012) Improved facial expression recognition via uni-hyperplane classification. 2012 I.E. Conference on Computer Vision and Pattern Recognition (CVPR), pp 2554–2561

  5. Cootes TF, Taylor CJ, Cooper DH, Graham J (1995) Active shape models-their training and application. Comput Vis Image Underst 61:38–59

    Article  Google Scholar 

  6. De Marsico M, Nappi M, Riccio D (2010) FARO: face recognition against occlusions and expression variations. IEEE Trans Syst Man Cybern Part A Syst Hum 40:121–132

    Article  Google Scholar 

  7. Ding C, Peng H (2005) Minimum redundancy feature selection from microarray gene expression data. J Bioinforma Comput Biol 3:185–205

    Article  Google Scholar 

  8. Elomaa T, Kaariainen M (2001) An analysis of reduced error pruning. J Artif Intell Res 15:163–187

    MathSciNet  MATH  Google Scholar 

  9. Ekman P, Friesen WV (1978) Facial action coding system: a technique for the measurement of facial movement. Consulting Psychologists Press, Palo Alto, CA

  10. Hernandez-Matamoros A, Bonarini A, Escamilla-Hernandez E, Nakano-Miyatake M, Perez-Meana H (2016) Facial expression recognition with automatic segmentation of face regions using a fuzzy based classification approach. Knowl-Based Syst 110:1–14

    Article  Google Scholar 

  11. Huhn JC, Hullermeier E (2009) Fr3: a fuzzy rule learner for inducing reliable classifiers. IEEE Trans Fuzzy Syst 17:138–149

    Article  Google Scholar 

  12. Huysmans J, Dejaeger K, Mues C, Vanthienen J, Baesens B (2011) An empirical evaluation of the comprehensibility of decision table, tree and rule based predictive models. Decis Support Syst 51:141–154

    Article  Google Scholar 

  13. Kanade T, Cohn JF, Tian Y (2000) Comprehensive database for facial expression analysis. IEEE International Conference on Automatic Face and Gesture Recognition, pp 46–53

  14. Lee SH, Ro YM (2016) Partial matching of facial expression sequence using over-complete transition dictionary for emotion recognition. IEEE Trans Affect Comput 7:389–408

    Article  Google Scholar 

  15. Lee TS, Chiu C-C, Chou Y-C, Lu C-J (2006) Mining the customer credit using classification and regression tree and multivariate adaptive regression splines. Comput Stat Data Anal 50:1113–1130

    Article  MathSciNet  MATH  Google Scholar 

  16. Li Q, Ren Y, Li L, Liu W (2016) Fuzzy based affinity learning for spectral clustering. Pattern Recogn 60:531–542

    Article  Google Scholar 

  17. Liang H, Liang R, Song M, He X (2016) Coupled dictionary learning for the detail-enhanced synthesis of 3-d facial expressions. IEEE Trans Cybern 46:890–901

    Article  Google Scholar 

  18. Liu X (1998) The fuzzy sets and systems based on AFS structure, EI algebra and EII algebra. Fuzzy Sets Syst 95:179–188

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu X (1998) The fuzzy theory based on afs algebras and afs structure. J Math Anal Appl 217:459–478

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu X, Pedrycz W (2009) Axiomatic fuzzy set theory and its applications. Studies in Fuzziness and Soft Computing 244. doi:10.1007/978-3-642-00402-5

  21. Liu X, Wang W, Chai T (2005) The fuzzy clustering analysis based on AFS theory. IEEE Trans Syst Man Cybern Part B Cybern 35:1013–1027

    Article  Google Scholar 

  22. Liu X, Chai T, Wang W, Liu W (2007) Approaches to the representations and logic operations of fuzzy concepts in the framework of axiomatic fuzzy set theory I. Inf Sci 177:1007–1026

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu X, Wang W, Chai T, Liu W (2007) Approaches to the representations and logic operations of fuzzy concepts in the framework of axiomatic fuzzy set theory II. Inf Sci 177:1027–1045

    Article  MathSciNet  MATH  Google Scholar 

  24. Lucey P, Cohn JF, Kanade T, Saragih J, Ambadar Z, Matthews I (2010) The extended cohn-kanade dataset (ck+): A complete dataset for action unit and emotion-specified expression. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 94–101

  25. Mohammadi MR, Fatemizadeh E, Mahoor MH (2016) Intensity estimation of spontaneous facial action units based on their sparsity properties. IEEE Trans Cybern 46:817–826

    Article  Google Scholar 

  26. Pantic M, Rothkrantz LJ (2004) Facial action recognition for facial expression analysis from static face images. IEEE Trans Syst Man Cybern Part B Cybern 34:1449–1461

    Article  Google Scholar 

  27. Peng H, Long F, Ding C (2005) Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27:1226–1238

    Article  Google Scholar 

  28. Pu X, Fan K, Chen X, Ji L, Zhou Z (2015) Facial expression recognition from image sequences using twofold random forest classifier. Neurocomputing 168:1173–1180

    Article  Google Scholar 

  29. Quinlan JR (1993) Quinlan J R. C4. 5: Programs for machine learning. Morgan Kaufmann Publishers Inc., San Francisco

  30. Ramoni M, Sebastiani P (2001) Robust bayes classifiers. Artif Intell 125:209–226

    Article  MathSciNet  MATH  Google Scholar 

  31. Ren Y, Li Q, Liu W, Li L (2016) Semantic facial descriptor extraction via axiomatic fuzzy set. Neurocomputing 171:1462–1474

    Article  Google Scholar 

  32. RodrìGuez RM, MartıNez L, Herrera F (2013) A group decision making model dealing with comparative linguistic expressions based on hesitant fuzzy linguistic term sets. Inf Sci 241:28–42

    Article  MathSciNet  MATH  Google Scholar 

  33. Sarkhel R, Das N, Saha AK, Nasipuri M (2016) A multi-objective approach towards cost effective isolated handwritten bangla character and digit recognition. Pattern Recogn 58:172–189

    Article  Google Scholar 

  34. Siebers M, Schmid U, Seuß D, Kunz M, Lautenbacher S (2016) Characterizing facial expressions by grammars of action unit sequences–a first investigation using ABL. Inf Sci 329:866–875

    Article  Google Scholar 

  35. Silva C, Vieira SM, Sousa JMC (2015) Fuzzy decision tree to predict readmissions in intensive care unit. Lect Notes Electr Eng 321:365–373

    Article  Google Scholar 

  36. Tenorio EZ, Thomaz CE (2011) Anàlise multilinear discriminante de formas frontais de imagens 2d de face. Proceedings of the X Simposio Brasileiro de Automacao Inteligente SBAI, pp 266–271

  37. Thomaz CE, Giraldi GA (2010) A new ranking method for principal components analysis and its application to face image analysis. Image Vis Comput 28:902–913

    Article  Google Scholar 

  38. Tseng JL (2016) An improved surface simplification method for facial expression animation based on homogeneous coordinate transformation matrix and maximum shape operator. Math Probl Eng 2016:14. doi:10.1155/2016/2370919 

  39. Turk MA, Pentland AP (1991) Face recognition using eigenfaces. 1991 I.E. Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, Maui, p 586–591

  40. Wang X, Liu X, Zhang L (2014) A rapid fuzzy rule clustering method based on granular computing. Appl Soft Comput 24:534–542

    Article  Google Scholar 

  41. Wang Z, Ruan Q, An G (2016) Facial expression recognition using sparse local fisher discriminant analysis. Neurocomputing 174:756–766

    Article  Google Scholar 

  42. Wang H, Gao J, Tong L, Yu L (2016) Facial expression recognition based on PHOG feature and sparse representation. 2016 I.E. Conference on Chinese control Conference (CCC), pp 3869–3874

  43. Yang S, Bhanu B (2012) Understanding discrete facial expressions in video using an emotion avatar image. IEEE Trans Syst Man Cybern Part B Cybern 42:980–992

    Article  Google Scholar 

  44. Zhang Z, Wang L, Zhu Q, Chen S-K, Chen Y (2015) Pose-invariant face recognition using facial landmarks and weber local descriptor. Knowl-Based Syst 84:78–88

    Article  Google Scholar 

  45. Zhang K, Mistry S, Neoh C, Lim CP (2016) Intelligent facial emotion recognition using moth-firefly optimization. Knowl-Based Syst 11:248–267

    Article  Google Scholar 

  46. Zhao G, Pietikäinen M (2007) Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Trans Pattern Anal Mach Intell 29(6):915–928

    Article  Google Scholar 

  47. Zhao H, Yuen PC (2008) Incremental linear discriminant analysis for face recognition. IEEE Trans Syst Man Cybern Part B Cybern 38:210–221

    Article  Google Scholar 

  48. Zhong L, Liu Q, Yang P, Huang J, Metaxas DN (2015) Learning multiscale active facial patches for expression analysis. IEEE Trans Cybern 45:1499–1510

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by Natural Science Foundation of China (No.61370146, 61672132) and Liaoning Science & Technology of Liaoning Province of China (No.2013405003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Duan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Zhang, Q., Duan, X. et al. New semantic descriptor construction for facial expression recognition based on axiomatic fuzzy set. Multimed Tools Appl 77, 11775–11805 (2018). https://doi.org/10.1007/s11042-017-4818-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-4818-3

Keywords

Navigation