Skip to main content
Log in

A new hybrid denoising model based on PDEs

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper, a novel denoising algorithm based on the denoising methods of partial differential equations is presented. The proposed algorithm is obtained by using a stochastic algorithm for combining two denoising methods based on partial differential equations. The model provides a new approach for solving the contradiction in the image restoration. The new hybrid model has more ability to restore the image in terms of peak signal to noise ratio, blind/referenceless image spatial quality evaluator and visual quality, compared with each of denoising methods separately used. Experimental results show that our approach is more efficient in image denoising than the used denoising methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aharon M, Elad M, Bruckstein A (2006) The K-SVD: an algorithm for designing of overcomplete dictionaries for sparse representation. IEEE Trans Image Process 54(11):4311–4322

    Article  MATH  Google Scholar 

  2. Andreu F, Mazόn JM, Moll JS (2005) The total variation flow with nonlinear boundary conditions. Asymptot Anal 43(1–2):9–46

    MathSciNet  MATH  Google Scholar 

  3. Aubert G, Kornprobst P (2006) Mathematical problems in image processing PDEs and the calculus of variations, 2nd edn. Springer, New York

    MATH  Google Scholar 

  4. Barbu T, Barbu V, Biga V, Coca D (2009) A PDE variational approach to image denoising and restorations. Nonlinear Anal RWA 10:1351–1361

    Article  MathSciNet  MATH  Google Scholar 

  5. Barcelos CAZ, Boaventura M, Silva EC Jr (2003) A well-balanced flow equation for noise removal and edge detection. IEEE Trans Image Process 12(7):751–763

    Article  Google Scholar 

  6. Beck A, Teboulle M (2009) Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Trans Image Process 18(11):2419–2434

    Article  MathSciNet  MATH  Google Scholar 

  7. Black MJ, Sapiro G, Marimont DH, Heeger D (1998) Robust anisotropic diffusion. IEEE Trans Image Process 7(3):421–432

    Article  Google Scholar 

  8. Chambolle A (2004) An algorithm for total variation minimization and applications. J Math Imaging Vision 20(1–2):89–97

    MathSciNet  MATH  Google Scholar 

  9. Chan T, Zhou H (1999) Adaptive ENO-wavelet Transforms for Discontinuous Functions. Computational and Applied Mathematics Technical Report, Department of Mathematics, UCLA. Tech. Rep. 99–21, Jun. 1999

  10. Chan T, Shen J, Vese L (2003) Variational PDE models in image processing. Notices of the AMS 50(1):14–26

    MathSciNet  MATH  Google Scholar 

  11. Chaux C, Duval L, Benazza-Benyahia A, Pesquet JC (2008) A nonlinear stein-based estimator for multichannel image denoising. IEEE Trans Signal Process 56(8):3855–3870

    Article  MathSciNet  Google Scholar 

  12. Chen B, Li Y, Cai JL (2012) Noisy image segmentation based on nonlinear diffusion equation model. Appl Math Model 36(3):1197–1208

    Article  MathSciNet  MATH  Google Scholar 

  13. Dong W, Li X, Zhang L, Shi G (2011) Sparsity-based image denoising via dictionary learning and structural clustering. CVPR 2011 (oral)

  14. Drapaca C (2009) A nonlinear total variation-based denoising method with two regularization parameters. IEEE Trans Biomed Eng 56(3):582–586

    Article  Google Scholar 

  15. Elad M, Aharon M (2006) Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans Image Process 15(12):3736–3745

    Article  MathSciNet  Google Scholar 

  16. Fouskakis D, Draper D (2002) Stochastic optimization: a review. Int Stat Rev 70(3):315–349

    Article  MATH  Google Scholar 

  17. Gai S, Luo L (2015) Image denoising using normal inverse Gaussian model in quaternion wavelet domain. Multimedia Tools and Applications 74(3):1107–1124

    Article  Google Scholar 

  18. Gonzalez RC, Woods RE (2006) Digital Image Processing. Prentice-Hall, Inc., Upper Saddle River

    Google Scholar 

  19. Isgrὸ F, Tegolo D (2008) A distributed genetic algorithm for restoration of vertical line scratches. Parallel Comput 34(12):727–734

    Article  Google Scholar 

  20. Jain AK (1989) Fundamentals of digital image processing. Prentice Hall, NJ

    MATH  Google Scholar 

  21. Jain P, Tyagi V (2017) An adaptive edge-perserving image denoising technique using patch-based weighted_ SVD filtering in wavelet domain. Multimedia Tools and Applications 76(2):1659–1679

    Article  Google Scholar 

  22. Jin JS, Wang Y, Hiller J (2000) An adaptive nonlinear diffusion algorithm for filtering medical images. IEEE Trans Inf Technol Biomed 4(4):298–305

    Article  Google Scholar 

  23. Kaisar S, Rijwan S, Al Mahmud J, Rahman MM (2008) Salt and pepper noise detection and removal by tolerance based selective arithmetic Mean filtering technique for image restoration. International Journal of Computer Science and Network Security 8(6):271–278

    Google Scholar 

  24. Katkovnik V, Egiazarian AJ (2006) Local approximation techniques in signal and image processing. SPIE Press. Monograph, vol PM157

  25. Korürek M, Yüksel A, Iscan Z, Dokur Z, Ölmez T (2010) Retr-ospective correction of near field effect of X-ray source in radiographic images by using genetic algorithms. Expert Syst Appl 37(3):1946–1954

    Article  Google Scholar 

  26. Kumar M, Dass S (2009) A total variation-based algorithm for pixel-level image function. IEEE Trans Image Process 18(9):2137–2143

    Article  MathSciNet  MATH  Google Scholar 

  27. Lysaker M, Lundervold A, Tai X-C (2003) Noise removal using fourth-order partial differential equation with application to medical magnetic resonance images in space and time. IEEE Trans Image Process 12(12):1579–1590

    Article  MATH  Google Scholar 

  28. Lysaker M, Osher S, Tai X-C (2004) Noise removal using smoothed normal and surface fitting. IEEE Trans Image Process 13(10):1345–1357

    Article  MathSciNet  MATH  Google Scholar 

  29. Mairal J, Elad M, Sapiro G (2008) Sparse representation for color image restoration. IEEE Trans Image Process 17(1):53–69

    Article  MathSciNet  MATH  Google Scholar 

  30. Mittal A, Moorthy AK, Bovik AC (2012) No-reference image quality assessment in the spatial domain. IEEE Trans Image Process 21(12):4695–4708

    Article  MathSciNet  MATH  Google Scholar 

  31. Monteil J, Beghdadi A (1998) A new adaptive nonlinear anisotropic diffusion for noise smoothing. In: IEEE International conference on image processing, vol. 3. Chicago Oct 1998, pp 254–258

  32. Pargas RP, Jain R (1993) A parallel algorithm for solving 2D bin packing problems. In: ICNN, pp 18–25

  33. Perona P, Malik J (1987) Scale space and edge detection using anisotropic diffusion. In: Proc. of IEEE Computer society workshop on Computer Vision, pp. 16–22 (November 1987)

  34. Portilla J, Strela V, Wainwright MJ, Simoncelli EP (2013) Image denoising using scale mixtures of gaussians in the wavelet domain. IEEE Trans Image Process 12(11):1338–1351

    Article  MathSciNet  MATH  Google Scholar 

  35. Prasath VBS, Vorotnikov D (2014) Weighted and well-balanced anisotropic diffusion scheme for image denoising and restoration. Nonlinear Anal Real World Appl 17:33–46

    Article  MathSciNet  MATH  Google Scholar 

  36. Ram I, Elad M, Cohen I (2011) Generalized tree-based wavelet transform. IEEE Trans Signal Process 59(9):4199–4209

    Article  MathSciNet  Google Scholar 

  37. Rudin L, Osher S, Fatemi E (1992) Nonlinear total variation based noise removal algorithms. Phisica D: Nonlinear Phenomena 60(1):259–268

    Article  MathSciNet  MATH  Google Scholar 

  38. Russo F (2003) A method for estimation and filtering of Gaussian noise in images. IEEE Trans Instrum Meas 52(4):1148–1154

    Article  Google Scholar 

  39. Russo F (2004) Image filtering based on piecewise linear models. In: IEEE International Workshop IST, Stresa, Italy, May 2004, pp 7–12

  40. Sethian JA (1999) Level set methods and fast marching methods: evolving interfaces in Computational geometry, fluid mechanics, Computer Vision and Materials Sciences. Cambridge University Press

  41. Toledo CFM, de Oliveira L, da Silva RD, Pedrini H (2013) Image denoising based on genetic algorithm. In IEEE Congress on Evolutionary Computation, pp. 1294–1301

  42. Tukey JW (1974) Nonlinear methods for smoothing data. In: Conf. Rec. EASCON`74, 1974, pp 673

  43. Weickert J (1998) Anisotropic diffusion in image processing. European consortium for mathematics in industry. B. G. Teubner, Stuttgart

    Google Scholar 

  44. Windyga PS (2001) Fast impulsive noise removal. IEEE Trans Image Process 10(1):173–178

    Article  Google Scholar 

  45. Xu P, Miao Q, Tang X, Zhang J (2014) A denoising algorithm via wiener filtering in the shearlet domain. Multimedia Tools and Applications 71(3):1529–1558

    Article  Google Scholar 

  46. Yahya AA, Tan JQ, Hu M (2014) A blending method based on partial differential equations for image denoising. Multimedia Tools and Applications 73(3):1843–1862

    Article  Google Scholar 

  47. Yin X, Zhou S, Abubakar M (2016) Fractional nonlinear anisotropic diffusion with P-Laplace variation method for image restoration. Multimedia Tools and Applications 75(8):4505–4526

    Article  Google Scholar 

  48. Zeng W, Lu X, Tan X (2015) A local structural adaptive partial differential equation for image denoising. Multimedia Tools and Applications 74(3):743–757

    Article  Google Scholar 

  49. Zhang X, Feng X (2015) Image denoising using local adaptive wiener filter in the gradient domain. Multimedia Tools and Applications 74(23):10495–10514

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to three anonymous referees for their valuable comments which substantially improved the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali R. Soheili.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamadi, N., Soheili, A.R. & Toutounian, F. A new hybrid denoising model based on PDEs. Multimed Tools Appl 77, 12057–12072 (2018). https://doi.org/10.1007/s11042-017-4858-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-4858-8

Keywords

Navigation