Skip to main content

Advertisement

Log in

Efficient and secure cryptosystem for fingerprint images in wavelet domain

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper, a fingerprint image encryption algorithm is proposed in order to enhance the protection of fingerprint-based systems against replay attacks. The proposed algorithm is consisting of permutation and diffusion operations in wavelet domain, whereas, one-level Lifting Wavelet Transform Integer-to-Integer is performed to the original fingerprint image. The approximation and detail sub-bands are then partitioned into blocks and permuted using a permutation key. It is noteworthy that, for each sub-band the Rubik’s cube principle is applied. The encrypted image is constructed by ordering the encrypted sub-bands. Eventually, an experimental tests and security analysis were conducted on three fingerprint images attained through Fingerprint Verification Competition “FVC 2000” database. The obtained results confirm the effectiveness of the proposed encryption algorithm and clearly show the robustness against common attacks, for example differential and statistical attacks. In addition, it reveals the high security level achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abundiz-Pérez F, Cruz-Hernández C, Murillo-Escobar MA, López-Gutiérrez RM, Arellano-Delgado A (2016) A fingerprint image encryption scheme based on hyperchaotic Rössler map, vol 2016

  2. Alvarez G, Li S (2006) Some basic cryptographic requirements for chaos-based cryptosystems. Int J Bifurcation Chaos 16(8):2129–2151

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen G, Mao Y, Chui CK (2004) A symmetric image encryption scheme based on 3D chaotic cat maps. Chaos, Solitons Fractals 21:749–761

    Article  MathSciNet  MATH  Google Scholar 

  4. Congress of the United States of America Enhanced border security and visa entry reform act of 2002, available at http://unitedstatesvisas.gov/pdfs/

  5. Delong C (2010) A novel fingerprint encryption algorithm based on chaotic system and fractional fourier transform. In: Proceedings of international conference on machine vision and human-machine interface, pp 168–171

    Google Scholar 

  6. Fingerprint Verification Competition (2012) FVC 2000, http://bias.csr.unibo.it/fvc2000/databases.asp

  7. Han F, Hu J, Yu X, Wang Y (2007) Fingerprint images encryption via multi-scroll chaotic attractors. Appl Math Comput 185(2):931–939

    MATH  Google Scholar 

  8. Jain AK, Bolle R, Pankanti S (2005) Biometrics: personal identification in networked society. Kluwer Academic Press

  9. Khan MK, Zhang J (2007) An intelligent fingerprint-biometric image scrambling scheme. In: Proceedings of the third international conference on intelligent computing, pp 1141–1151

    Google Scholar 

  10. Loukhaoukha K, Chouinard J-Y, Berdai A (2012) A secure image encryption algorithm based on rubik’s cube principle. J Electr Comput Eng 2012:13

    MathSciNet  MATH  Google Scholar 

  11. Ratha NK, Connell HH, Bolle RM (2001) An analysis of minutiae matching strength. In: Proceedings of the 3rd international conference on audio and video based biometric person, vol 2091, pp 223– 228

    Google Scholar 

  12. Ratha NK, Connell JH, Bolle RM (2001) Enhancing security and privacy in biometrics-based authentication systems. IBM Syst J 40(3):614–634

    Article  Google Scholar 

  13. Shannon CE (1949) Communication theory of secrecy systems. Bell Syst Tech J 28(4):656–715

    Article  MathSciNet  MATH  Google Scholar 

  14. Uludag U, Pankanti S, Prabhakar S, Jain AK (2004) Biometric cryptosystems: issues and challenges. Proc IEEE 92(6):948–960

    Article  Google Scholar 

  15. Wu C (2007) Advanced feature extraction algorithms for automatic fingerprint recognition systems. Ph.D. thesis, University of New York at Buffalo, USA

  16. Wu Y, Zhou Y, Saveriades G, Agaian S, Noonan JP, Natarajan P (2013) Local Shannon entropy measure with statistical tests for image randomness. Inf Sci 222:323–342

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled Loukhaoukha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loukhaoukha, K., Refaey, A., Zebbiche, K. et al. Efficient and secure cryptosystem for fingerprint images in wavelet domain. Multimed Tools Appl 77, 9325–9339 (2018). https://doi.org/10.1007/s11042-017-4938-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-4938-9

Keywords

Navigation