Skip to main content

Advertisement

Log in

Human tracking using joint color-texture features and foreground-weighted histogram

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper proposes a new appearance model for human tracking based on Mean Shift framework. The proposed method uses a novel target representation by using joint Color-Texture features and Foreground-Weighted Histogram (CTFWH) for a more distinctive and effective target representation. Our contribution is threefold: firstly, to exploit the texture information of the target, we have used joint color-texture histogram to represent the target. Local Binary Pattern (LBP) technique is employed to identify texture features in the target region. Secondly, we have proposed a representation model of the foreground region named Foreground-Weighted Histogram (FWH), in order to exploit the significant features of the foreground region and to use it for selecting only the salient parts from the target model. Thirdly, we propose a simple method to update the foreground model due to the important foreground changes over the tracking process. Hence, by combining these concepts we generate new features for target representation and human tracking. The proposed method is designed for human tracking in complex scenarios and tested for comparative results with existing state-of-the-art algorithms. Experimental results on numerous challenging video sequences verify the significance of the proposed approach in terms of robustness and performance to complex background, illumination and appearance changes, similar target and background appearance, presence of distractors, target and camera motion, occlusions and large background variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. The profile of a kernel K is defined as a function \( k:\left[\begin{array}{cc}0& \infty \end{array}\right[\to R \) such that K(x) = k(‖x2) [7].

References

  1. Adam A, Rivlin E, Shimshoni I (2006) Robust fragments-based tracking using the integral histogram. IEEE Conf Comput Vis Pattern Recognit (CVPR) 1:798–805. doi:10.1109/CVPR.2006.256

    Google Scholar 

  2. Birchfield S, Rangarajan S (2005) Spatiograms vs. histograms for region based tracking. IEEE Conf Comput Vis Pattern Recognit (CVPR) 2:1158–1163. doi:10.1109/CVPR.2005.330

    Google Scholar 

  3. Bouachir W, Bilodeau GA (2015) Collaborative part-based tracking using salient local predictors. Comput Vis Image Underst 137:88–101. doi:10.1016/j.cviu.2015.03.010

    Article  Google Scholar 

  4. Bousetouane F, Dib L, Snoussi H (2013) Improved mean shift integrating texture and color features for robust real time object tracking. Vis Comput 29(3):155–170. doi:10.1007/s00371-012-0677-0

    Article  Google Scholar 

  5. Bradski G (1998) Computer vision face tracking for use in a perceptual user interface. Intel Technol J 2(2):12–21

    Google Scholar 

  6. Cheng Y (1995) Mean shift, mode seeking and clustering. IEEE Trans Pattern Anal Mach Intell 17(8):790–799. doi:10.1109/34.400568

    Article  Google Scholar 

  7. Comaniciu D, Ramesh V, Meer P (2003) Kernel-based object tracking. IEEE Trans Pattern Anal Mach Intell 25(5):564–577. doi:10.1109/TPAMI.2003.1195991

    Article  Google Scholar 

  8. Fukunaga K, Hostetler LD (1975) The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans Inf Theory 21(1):32–40. doi:10.1109/TIT.1975.1055330

    Article  MathSciNet  MATH  Google Scholar 

  9. Georgescu B, Meer P (2004) Point matching under large image deformations and illumination changes. IEEE Trans Pattern Anal Mach Intell 26(6):674–689. doi:10.1109/TPAMI.2004.2

    Article  Google Scholar 

  10. Haralick R, Shanmugam K, Dinstein I (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 3(6):610–621. doi:10.1109/TSMC.1973.4309314

    Article  Google Scholar 

  11. Hare S, Golodetz S, Saffari A, Vineet V, Cheng MM, Hicks SL, Torr PH (2016) Struck: structured output tracking with kernels. IEEE Trans Pattern Anal Mach Intell 38(10):2096–2109. doi:10.1109/TPAMI.2015.2509974

    Article  Google Scholar 

  12. Haritaoglu I, Flickner M (2001) Detection and tracking of shopping groups in stores. IEEE Conf Comput Vis Pattern Recognit (CVPR) 1:431–438. doi:10.1109/CVPR.2001.990507

    Google Scholar 

  13. Heikkilä M, Pietikäinen M (2006) A texture-based method for modeling the background and detecting moving objects. IEEE Trans Pattern Anal Mach Intell 28(4):657–662. doi:10.1109/TPAMI.2006.68

    Article  Google Scholar 

  14. Henriques JF, Caseiro R, Martins P, Batista J (2012) Exploiting the circulant structure of tracking-by-detection with kernels. Comput Vis–ECCV:702–715. doi:10.1007/978-3-642-33765-9_50

  15. Henriques JF, Caseiro R, Martins P, Batista J (2015) High-speed tracking with kernelized correlation filters. IEEE Trans Pattern Anal Mach Intell 37(3):583–596. doi:10.1109/TPAMI.2014.2345390

    Article  Google Scholar 

  16. Ito Y (1991) Representation of functions by superpositions of a step or sigmoid function and their applications to neural network theory. Neural Netw 4(3):385–394. doi:10.1016/0893-6080(91)90075-G

    Article  Google Scholar 

  17. Jeyakar J, Babu RV, Ramakrishnan KR (2008) Robust object tracking with background-weighted local kernels. Comput Vis Image Underst 112(3):296–309. doi:10.1016/j.cviu.2008.05.005

    Article  Google Scholar 

  18. Jia X, Lu H, Yang M-H (2012) Visual tracking via adaptive structural local sparse appearance model. IEEE Conf Comput Vis Pattern Recognit (CVPR):1822–1829. doi:10.1109/CVPR.2012.6247880

  19. Jodoin J-P, Bilodeau G-A, Saunier N (2014) Urban tracker: multiple object tracking in urban mixed traffic. IEEE Conf Winter Appl Comput Vision (WACV):885–892. doi:10.1109/WACV.2014.6836010

  20. Kailath T (1967) The divergence and Bhattacharyya distance measures in signal selection. IEEE Trans Commmun Technol 15(1):52–60. doi:10.1109/TCOM.1967.1089532

    Article  Google Scholar 

  21. Kettnaker V, Zabih R (1999) Bayesian multi-camera surveillance. IEEE Conf Comput Vis Pattern Recognit (CVPR) 2:2544–2550. doi:10.1109/CVPR.1999.784638

    Google Scholar 

  22. Laaroussi K, Saaidi A, Masrar M, Satori K (2014) Video-surveillance system for tracking moving people using color interest points. World Appl Sci J (WASJ) 32(2):289–301. doi:10.5829/idosi.wasj.2014.32.02.343

    Google Scholar 

  23. Laaroussi K, Saaidi A, Satori K (2014) People tracking using color control points and skin color. J Emerg Technol Web Intell 6(1):94–100. doi:10.4304/jetwi.6.1.94-100

    Google Scholar 

  24. Laaroussi K, Saaidi A, Masrar M, Satori K (2016) Human tracking based on appearance model. Springer Conf Inf Comm Technol 1:297–305. doi:10.1007/978-3-319-30301-7_31

    Google Scholar 

  25. Laaroussi K, Saaidi A, Masrar M, Satori K (2016) Scale and orientation-based background weighted histogram for human tracking. 3D Res J 7(3):1–17. doi:10.1007/s13319-016-0097-4

    Google Scholar 

  26. Lei B, Xu L-Q (2006) Real-time outdoor video surveillance with robust foreground extraction and object tracking via multi-state transition management. Pattern Recogn Lett 27(15):1816–1825. doi:10.1016/j.patrec.2006.02.017

    Article  Google Scholar 

  27. Li X, Hu W, Shen C, Zhang Z, Dick A, Hengel AVD (2013) A survey of appearance models in visual object tracking. ACM Trans Intell Syst Technol 4(4). doi:10.1145/2508037.2508039

  28. Li X, Shen C, Dick A, Van Den Hengel A (2013) Learning compact binary codes for visual tracking. IEEE Conf Comput Vis Pattern Recognit (CVPR):2419–2426. doi:10.1109/CVPR.2013.313

  29. Liu X, Deng C, Lang B, Tao D, Li X (2016) Query-adaptive reciprocal hash tables for nearest neighbor search. IEEE Trans Image Process 25(2):907–919. doi:10.1109/TIP.2015.2505180

    Article  MathSciNet  Google Scholar 

  30. Liu X, Du B, Deng C, Liu M, Lang B (2016) Structure sensitive hashing with adaptive product quantization. IEEE Trans Cybern 46(10):2252–2264. doi:10.1109/TCYB.2015.2474742

    Article  Google Scholar 

  31. Lu H, Zhou Q, Wang D, Xiang R (2011) A co-training framework for visual tracking with multiple instance learning. IEEE Conf Autom Face Gesture Recognit:539–544. doi:10.1109/FG.2011.5771455

  32. Ning J, Zhang L, Zhang D, Wu C (2009) Robust object tracking using joint color-texture histogram. Int J Pattern Recognit Artif Intell 23(7):1245–1263. doi:10.1142/S0218001409007624

    Article  Google Scholar 

  33. Ojala T, Pietikäinen M, Harwood D (1996) A comparative study of texture measures with classification based on feature distributions. Pattern Recogn 29(1):51–59. doi:10.1016/0031-3203(95)00067-4

    Article  Google Scholar 

  34. Ojala T, Pietikäinen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987. doi:10.1109/TPAMI.2002.1017623

    Article  MATH  Google Scholar 

  35. Pan Z, Liu S, Fu W (2016) A review of visual moving target tracking. Multimed Tools Appl:1–30. doi:10.1007/s11042-016-3647-0

  36. Pietikäinen M, Hadid A, Zhao G, Ahonen T (2011) Computer vision using local binary patterns, 40, Springer Science & Business Media

  37. Polat E, Ozden M (2006) A nonparametric adaptive tracking algorithm based on multiple feature distributions. IEEE Trans Multimedia 8(6):1156–1163. doi:10.1109/TMM.2006.884624

    Article  Google Scholar 

  38. Porikli F (2005) Integral histogram: a fast way to extract histograms in cartesian spaces. IEEE Conf Comput Vis Pattern Recognit (CVPR) 1:829–836. doi:10.1109/CVPR.2005.188

    Google Scholar 

  39. Qingchang G, Xiaojuan C, Hongxia C (2007) Mean-shift of variable window based on the Epanechnikov kernel. IEEE Conf Mechatronics Autom (ICMA):2314–2319. doi:10.1109/ICMA.2007.4303914

  40. Senior A, Hampapur A, Tian Y, Brown L, Pankanti S, Bolle R (2006) Appearance models for occlusion handling. Image Vis Comput 24(11):1233–1243. doi:10.1016/j.imavis.2005.06.007

    Article  Google Scholar 

  41. Swain M, Ballard D (1991) Color indexing. Int J Comput Vis 7(1):11–32. doi:10.1007/BF00130487

    Article  Google Scholar 

  42. The Litiv Datasets (2017). http://www.polymtl.ca/litiv/en/vid/. Accessed 21 June 2017

  43. The Visual Tracker Benchmark database (2017). http://www.visual-tracking.net/. Accessed 21 June 2017

  44. Wang JQ, Yagi YS (2008) Integrating color and shape-texture features for adaptive real-time object tracking. IEEE Trans Image Process 17(2):235–240. doi:10.1109/TIP.2007.914150

    Article  Google Scholar 

  45. Wang H, Klaser A, Schmid C, Liu C-L (2011) Action recognition by dense trajectories. IEEE Conf Comput Vis Pattern Recognit (CVPR):3169–3176. doi:10.1109/CVPR.2011.5995407

  46. Wang D, Shi Y, Sun W (2015) A novel background-weighted histogram scheme based on foreground saliency for mean-shift tracking. Multimed Tools Appl 75(17):1–19. doi:10.1007/s11042-015-3078-3

    Google Scholar 

  47. Wang D, Lu H, Bo C (2015) Visual tracking via weighted local cosine similarity. IEEE Trans Cybern 45(9):1838–1850. doi:10.1109/TCYB.2014.2360924

    Article  Google Scholar 

  48. Wren C, Azarbayejani A, Darrell T, Pentland A (1997) Pfinder: real-time tracking of the human body. IEEE Trans Pattern Anal Mach Intell 19(7):780–785. doi:10.1109/34.598236

    Article  Google Scholar 

  49. Wu Y, Lim J, Yang MH (2015) Object tracking benchmark. IEEE Trans Pattern Anal Mach Intell 37(9):1834–1848. doi:10.1109/TPAMI.2014.2388226

    Article  Google Scholar 

  50. Xiaorong P, Zhihu Z (2012) A more robust mean shift tracker on joint color-CLTP histogram. Int J Image, Graph Signal Process 4(12):34–42. doi:10.5815/ijigsp.2012.12.05

    Article  Google Scholar 

  51. Yang C, Duraiswami R, Davis L (2005) Efficient mean-shift tracking via a new similarity measure. IEEE Conf Comput Vis Pattern Recognit (CVPR):176–183. doi:10.1109/CVPR.2005.139

  52. Yilmaz A, Li X, Shah M (2004) Contour-based object tracking with occlusion handling in video acquired using mobile cameras. IEEE Trans Pattern Anal Mach Intell 26(11):1531–1536. doi:10.1109/TPAMI.2004.96

    Article  Google Scholar 

  53. Yinghong M, Zhi-Hong M, Wenyan J, Chengliu L, Jiawei Y, Mingui S (2011) Magnetic hand tracking for human-computer interface. IEEE Trans Magn 47(5):970–973. doi:10.1109/TMAG.2010.2076401

    Article  Google Scholar 

  54. Zhang X, Dai YM, Chen ZW, Zhang HX (2010) An improved mean shift tracking algorithm based on color and texture feature. IEEE Conf Wavel Anal Pattern Recognit (ICWAPR):38–43. doi:10.1109/ICWAPR.2010.5576453

  55. Zhang K, Zhang L, Yang M. H, Zhang D (2013) Fast tracking via spatio-temporal context learning. arXiv preprint arXiv 1311.1939

  56. Zhao Q, Yang Z, Tao H (2010) Differential earth mover’s distance with its applications to visual tracking. IEEE Trans Pattern Anal Mach Intell 32(2):274–287. doi:10.1109/TPAMI.2008.299

    Article  Google Scholar 

  57. Zhong W, Lu H, Yang MH (2014) Robust object tracking via sparse collaborative appearance model. IEEE Trans Image Process 23(5):2356–2368. doi:10.1109/TIP.2014.2313227

    Article  MathSciNet  MATH  Google Scholar 

  58. Zhou Q-H, Lu H, Yang M-H (2011) Online multiple support instance tracking. IEEE Conf Autom Face Gesture Recognit:545–552. doi:10.1109/FG.2011.5771456

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khadija Laaroussi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laaroussi, K., Saaidi, A., Masrar, M. et al. Human tracking using joint color-texture features and foreground-weighted histogram. Multimed Tools Appl 77, 13947–13981 (2018). https://doi.org/10.1007/s11042-017-5000-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-5000-7

Keywords

Navigation