Skip to main content
Log in

Parametric ratio-based method for efficient contrast-preserving decolorization

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Decolorization is a fundamental technology indispensable for image processing, digital printing, and photograph rendering, while it suffers from information loss. This paper presents a novel parametric ratio-based method for efficient contrast-preserving decolorization (PrDecolor). For better preserving the details, features and visual distinctiveness of original color contrast, the proposed method simplifies and improves the current ratio-based decolorization model by incorporating the multivariate parametrical constraint. Moreover, the newly defined model is solved by efficient augmented Lagrangian and alternating direction method. The presented algorithm exhibits excellent iterative convergence and robustness with respect to the parameters. Extensive experiments under a variety of test images and a comprehensive evaluation against existing state-of-the-art methods consistently demonstrate the potential of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Afonso M, Bioucas-Dias J, Figueiredo M (2011) An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems. IEEE Trans Image Process 20(3):681–695

    Article  MathSciNet  MATH  Google Scholar 

  2. Ancuti CO, Ancuti C, Bekaert P (2011) Enhancing by saliency guided decolorization. In: Proceedings of IEEE conference CVPR, pp 257–264

  3. Bala R, Eschbach R (2004) Spatial color-to-grayscale transform preserving chrominance edge information. In Color Imaging Conference, pp 82–86

  4. Cadik M (2008) Perceptual evaluation of color-to-grayscale image conversions. Comput Graph Forum 27(7):1745–1754

    Article  Google Scholar 

  5. Cui J, Liu Y, Xu Y et al (2013) Tracking generic human motion via fusion of low-and high-dimensional approaches. IEEE Trans Syst 43(4):996–1002

    Google Scholar 

  6. Daubechies I, Defrise M, De M (2004) An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun Pure Appl Math 57(11):1413–1457

    Article  MathSciNet  MATH  Google Scholar 

  7. Du H, He S, Sheng B, Ma L, Lau R (2015) Saliency-guided color-to-gray conversion using region-based optimization. Image processing. IEEE Trans Image Process 24(1):434–443

    Article  MathSciNet  Google Scholar 

  8. Gooch A, Olsen SC, Tumblin J, Gooch B (2005) Color2gray: salience-preserving color removal. ACM Trans Graph 24(3):634–639

    Article  Google Scholar 

  9. Gorodnitsky I, Rao B (1997) Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm. IEEE Trans Signal Process 45(3):600–616

    Article  Google Scholar 

  10. Grundland M, Dodgson NA (2007) Decolorize: fast, contrast enhancing, color to grayscale conversion. Pattern Recogn 40(11):2891–2896

    Article  Google Scholar 

  11. He J, Liu Q, Christodoulou AG, Ma C, Lam F, Liang Z-P (2016) Accelerated high-dimensional MR imaging with sparse sampling using low-rank tensors. IEEE Trans Med Imag 32(7):2119–2129

    Article  Google Scholar 

  12. Jin Z, Ng M (2015) A contrast maximization method for color-to-grayscale conversion. Multidim Syst Sign Process 26(3):869–877

    Article  Google Scholar 

  13. Jin Z, Li F, Ng M (2014) A variational approach for image decolorization by variance maximization. SIAM J Imag Sci 7(2):944–968

    Article  MathSciNet  MATH  Google Scholar 

  14. Kim Y, Jang C, Demouth J, Lee S (2009) Robust color-to-gray via nonlinear global mapping. ACM Trans Graph 28(5):1–4

    Google Scholar 

  15. Kuk J, Ahn J, Cho N (2010) A color to grayscale conversion considering local and global contrast. 10th Asian Conference on Computer Vision, Queenstown, pp 513–524

  16. Liu Y, Zhang X, Cui J et al (2010) Visual analysis of child-adult interactive behaviors in video sequence. Virtual Systems and Multimedia (VSMM), 2010 16th International Conference on, pp 26–33

  17. Liu Q, Wang S, Luo J, Zhu Y, Ye M (2012) An augmented Lagrangian approach to general dictionary learning for image denoising. J Vis Commun Image Represent 23(5):753–766

    Article  Google Scholar 

  18. Liu Y, Cui J, Zhao H et al (2012) Fusion of low-and high-dimensional approaches by trackers sampling for generic human motion tracking. Pattern Recognition (ICPR), 2012 21st International Conference on, pp 898–901

  19. Liu Q, Liang D, Song Y, Luo J, Zhu Y, Li W (2013) Augmented Lagrangian based sparse representation method with dictionary updating for image deblurring. SIAM J Imag Sci 6(3):1689–1718

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu Q, Liu J, Dong P, Liang D (2013) SGTD: Structure gradient and texture decorrelating regularization for image decomposition. In Proceedings of the IEEE International Conference on Computer Vision, Sydney, pp 1081–1088

  21. Liu Q, Peng X, Liu J, Yang D, Liang D (2014) A weighted two-level bregman method with dictionary updating for nonconvex MR image reconstruction. J Biomed Imaging 11:128596–128596

    Google Scholar 

  22. Liu Q, Liu Peter X, Xie W, Wang Y, Liang D (2015) GcsDecolor: gradient correlation similarity for efficient contrast preserving decolorization. IEEE Trans Image Process 23(5):2889–2904

    MathSciNet  Google Scholar 

  23. Liu Q, Liu X, Wang Y, Leung H (2016) Semi-parametric decolorization with laplacian-based perceptual quality metric. IEEE Trans Circuits Syst Video Technol 99:1–13

    Article  Google Scholar 

  24. Liu Y, Nie L, Liu L et al (2016) From action to activity: sensor-based activity recognition. Neurocomputing 181:108–115

    Article  Google Scholar 

  25. Lu C, Xu L, Jia J (2012) Contrast preserving decolorization. In: IEEE international conference on computational photography (ICCP), pp.1-7

  26. Lu C, Xu L, Jia J (2014) Contrast preserving decolorization with perception-based quality metrics. Int J Comput Vis 110(2):222–239

    Article  Google Scholar 

  27. Lu Y, Wei Y, Liu L et al (2017) Towards unsupervised physical activity recognition using smartphone accelerometers. Multimedia Tools and Applications 76(8):10701–10719

    Article  Google Scholar 

  28. Neumann L, Cadik M, Nemcsics A (2007) An efficient perception-based adaptive color to gray transformation. In: Computational aesthetics, pp 73–80

  29. Osher S, Burger M, Goldfarb D, Xu J, Yin W (2005) An iterative regularization method for total variation-based image restoration. Multiscale Model Simul 4(2):460–489

    Article  MathSciNet  MATH  Google Scholar 

  30. Rao B, Kreutz-Delgado K (1999) An affine scaling methodology for best basis selection. IEEE Trans Signal Process 47(1):187–200

    Article  MathSciNet  MATH  Google Scholar 

  31. Rasche K, Geist R, Westall J (2005) Re-coloring images for gamuts of lower dimension. Comput Graph Forum 24(3):423–432

    Article  Google Scholar 

  32. Rockafellar R (1976) Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math Oper Res 1(2):97-116

  33. Rodriguez P, Wohlberg B (2008) An efficient algorithm for sparse representations with l p data fidelity term. Proceedings of 4th IEEE Andean Technical Conference (ANDESCON)

  34. Smith K, Landes PE, Thollot J, Myszkowski K (2008) Apparent greyscale: a simple and fast conversion to perceptually accurate images and video. Comput Graph Forum 27(2):193–200

    Article  Google Scholar 

  35. Song M, Tao D, Chen C, Li X, Chen CW (2010) Color to gray: visual cue preservation. IEEE Trans Pattern Anal Mach Intell 32(9):1537–1552

    Article  Google Scholar 

  36. Song Y, Bao L, Xu X, Yang, Q (2013) Decolorization: Is rgb2gray () out?. In SIGGRAPH Asia 2013 Technical Briefs, Hong Kong, p 15

  37. Song M, Tao D, Bu J, Chen C, Yang Y (2013a) Color-to-gray based on chance of happening preservation. Neurocomputing 119:222–231

    Article  Google Scholar 

  38. Xie X, Zaitsev Y, Velásquez-García LF et al (2014) Scalable, MEMS-enabled, vibrational tactile actuators for high resolution tactile displays. J Micromech Microeng 24(12):125014

    Article  Google Scholar 

  39. Xie X, Zaitsev Y, Velasquez-Garcia L, Teller S, Livermore C (2014) Compact, scalable, high-resolution, MEMS-enabled tactile displays. In Proc. of Solid-State Sensors, Actuators, and Microsystems Workshop, pp 127–130

  40. Yang J, Zhang Y (2011) Alternating direction algorithms for l 1 -problems in compressive sensing. SIAM J Sci Comput 33(1):250–278

    Article  MathSciNet  MATH  Google Scholar 

  41. Yang J, Zhang Y, Yin W (2009) An efficient TV l 1 algorithm for deblurring multichannel images corrupted by impulsive noise. SIAM J Sci Comput 31(4):2842–2865

    Article  MathSciNet  MATH  Google Scholar 

  42. Yin W, Osher S, Goldfarb D, Darbon J (2008) Bregman iterative algorithms for l 1 -min 168 imization with applications to compressed sensing. SIAM J Imag Sci 1(1):143

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoling Xu.

Additional information

Project supported by the National Natural Science Foundation of China under 61661031, 61362001, 61503176, Jiangxi Advanced Projects for Post-doctoral Research Funds (2014KY02)

Appendix

Appendix

In earlier literatures [11] and [19], we found that the AL and ADM have been applied to solve the low-rank factorization based matrix separation problem and dictionary learning problem. For these non-convex problems they both provided a weak convergence result for their algorithm, i.e. under mild conditions any limit point of the iteration sequence generated by the algorithm is a KKT point. In our work, for this new non-convex problem we also give a similar result with regard to the convergence of the algorithm PrDecolor. It should be emphasized that although the following convergence result far from being satisfactory, it provides an assurance for the behavior of the algorithm.

Since the sub-gradient of the L(w, s) are as follows:

$$ {\displaystyle \begin{array}{l}\frac{\partial }{\partial w}L\left(w,s\right)=\frac{\partial }{\partial w}\left\{\frac{\gamma }{2}{\left\Vert \sum \limits_{I_l\in {Z}_2}{w}_l\nabla {I}_l-\left({s}_{x,y}-\lambda /\gamma \right)\right\Vert}_2^2\right\}\\ {}\kern7.5em =\gamma \sum \limits_{I_l\in {Z}_2}\nabla {I_l}^T\left[w\nabla {I}_l-\left({s}_{x,y}-\lambda /\gamma \right)\right]=0\end{array}} $$
(14)
$$ {\displaystyle \begin{array}{l}\frac{\partial }{\partial s}L\left(w,s\right)=\frac{\partial }{\partial s}\left\{-2K\sum \limits_{\left(x,y\right)\in P}\left|{\delta}_{x,y}\right|\frac{1}{2}{\left\Vert \sqrt{t}{s}_{x,y}\right\Vert}_2^2+\frac{\left(2+\gamma \right)}{2}{\left\Vert {s}_{x,y}-\frac{\gamma \sum \limits_{I_l\in {Z}_2}{w}_l\nabla {I}_l+\lambda }{2+\gamma}\right\Vert}_2^2\right\}\\ {}=\frac{\partial }{\partial s}\left\{-2K\sum \limits_{\left(x,y\right)\in P}\left|{\delta}_{x,y}\right|\frac{1}{2}{\left\Vert \sqrt{t}{s}_{x,y}\right\Vert}_2^2+\frac{\left(2+\gamma \right)}{2}{\left\Vert \frac{\left(2+\gamma \right){s}_{x,y}-\left(\gamma \sum \limits_{I_l\in {Z}_2}{w}_l\nabla {I}_l+\lambda \right)}{2+\gamma}\right\Vert}_2^2\right\}\\ {}=\frac{\partial }{\partial s}\left\{-2K\sum \limits_{\left(x,y\right)\in P}\left|{\delta}_{x,y}\right|\frac{1}{2}{\left\Vert \sqrt{t}{s}_{x,y}\right\Vert}_2^2+\frac{\left(2+\gamma \right)}{2}{\left\Vert \frac{\gamma \left({s}_{x,y}-\sum \limits_{I_l\in {Z}_2}{w}_l\nabla {I}_l\right)+2{s}_{x,y}-\lambda }{2+\gamma}\right\Vert}_2^2\right\}\\ {}=\left(2-2 Kt\sum \limits_{\left(x,y\right)\in P}\left|{\delta}_{x,y}\right|\right){s}_{x,y}-\lambda =0\end{array}} $$
(15)

Additionally, by considering the constraints \( {s}_{x,y}=\sum_{I_l\in {Z}_2}{w}_l\nabla {I}_l \), it is straightforward to obtain the KKT conditions for (5) are as follows:

$$ {\displaystyle \begin{array}{l}\sum \limits_{I_l\in {Z}_2}\lambda \nabla {I_l}^T=0;\\ {}\left(2-2 Kt\sum \limits_{\left(x,y\right)\in P}\left|{\delta}_{x,y}\right|\right){s}_{x,y}-\lambda =0;\\ {}{s}_{x,y}=\sum \limits_{I_l\in {Z}_2}{w}_l\nabla {I}_l\end{array}} $$
(16)

Proposition 1

Let X ≜ (w, s) and \( {\left\{{X}^k\right\}}_{k=1}^{\infty } \) be generated by our algorithm PrDecolor, Assume that \( {\left\{{X}^k\right\}}_{k=1}^{\infty } \) is bounded and \( \underset{k\to \infty }{\lim}\left({X}^{k+1}-{X}^k\right)=0 \). Then any accumulation of \( {\left\{{X}^k\right\}}_{k=1}^{\infty } \) satisfies the KKT conditions (16). In particular, whenever \( {\left\{{X}^k\right\}}_{k=1}^{\infty } \) converges, it converges to a KKT point of (5).

Proof

Firstly, since \( {w}^{k+1}=\frac{\sum_{I_l\in {Z}_2}\nabla {I_l}^T\left({s}_i^{k+1}-{\lambda}^{k+1}/\gamma \right)}{\sum_{I_l\in {Z}_2}\nabla {I_l}^T\nabla {I}_l} \), it follows that

$$ {\displaystyle \begin{array}{l}{w}^{k+1}-{w}^k=\frac{\sum \limits_{I_l\in {Z}_2}\nabla {I_l}^T\left({s}_i^{k+1}-{\lambda}^{k+1}/\gamma \right)}{\sum \limits_{I_l\in {Z}_2}\nabla {I_l}^T\nabla {I}_l}-{w}^k\\ {}\kern7em =\frac{\sum \limits_{I_l\in {Z}_2}\nabla {I_l}^T\left({s}_i^{k+1}-\sum \limits_{I_l\in {Z}_2}\nabla {I}_l{w}^k-{\lambda}^{k+1}/\gamma \right)}{\sum \limits_{I_l\in {Z}_2}\nabla {I_l}^T\nabla {I}_l}\end{array}} $$
(17)

Secondly,

$$ {\displaystyle \begin{array}{l}{s}_{x,y}^{k+1}-{s}_{x,y}^k=\frac{\gamma \sum \limits_{I_l\in {Z}_2}{w}_l^{k+1}\nabla {I}_l+{\lambda}^k}{2+\gamma -2 Kt\sum \limits_{\left(x,y\right)\in P}\left|{\delta}_{x,y}\right|}-{s}_{x,y}^k\\ {}\kern6.5em =\frac{\gamma \sum \limits_{I_l\in {Z}_2}{w}_l^{k+1}\nabla {I}_l+{\lambda}^k-{s}_{x,y}^k\left(2+\gamma -2 Kt\sum \limits_{\left(x,y\right)\in P}\left|{\delta}_{x,y}\right|\right)}{2+\gamma -2 Kt\sum \limits_{\left(x,y\right)\in P}\left|{\delta}_{x,y}\right|}\\ {}\kern6.5em =\frac{\gamma \left(\sum \limits_{I_l\in {Z}_2}{w}_l^{k+1}\nabla {I}_l\_{s}_{x,y}^k\right)+{\lambda}^k-{s}_{x,y}^k\left(2-2 Kt\sum \limits_{\left(x,y\right)\in P}\left|{\delta}_{x,y}\right|\right)}{2+\gamma -2 Kt\sum \limits_{\left(x,y\right)\in P}\left|{\delta}_{x,y}\right|}\end{array}} $$
(18)

Finally, it follows that

$$ {\lambda}^{k+1}={\lambda}^k+\gamma \left(\sum_{I_l\in {Z}_2}{w}_l^{k+1}\nabla {I}_l-{s}^{k+1}\right) $$
(19)

Hence \( \underset{k\to \infty }{\lim}\left({X}^{k+1}-{X}^k\right)=0 \) implies that both sides of (17)(18)(19) all tend to zero as k goes to infinity. Consequently,

$$ {\displaystyle \begin{array}{l}s-\sum \limits_{I_l\in {Z}_2}{w}_l\nabla {I}_l\to 0;\\ {}\sum \limits_{I_l\in {Z}_2}\lambda \nabla {I_l}^T\to 0;\\ {}\left(2-2 Kt\sum \limits_{\left(x,y\right)\in P}\left|{\delta}_{x,y}\right|\right){s}_{x,y}-\lambda \to 0;\end{array}} $$
(20)

where the first limit in (20) is used to derive other limits. That is, the sequence \( {\left\{{X}^k\right\}}_{k=1}^{\infty } \) asymptotically satisfies the KKT conditions (16), from which the conclusions of the proposition follow readily. This completes the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, J., Lu, H., Liu, Q. et al. Parametric ratio-based method for efficient contrast-preserving decolorization. Multimed Tools Appl 77, 15721–15745 (2018). https://doi.org/10.1007/s11042-017-5143-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-5143-6

Keywords

Navigation