Skip to main content

Advertisement

Log in

A canonical form-based approach to affine registration of DTI

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Due to the orientation feature of diffusion tensor images (DTI), tensors need to be reoriented during an affine registration. There exists two active reorientation schemes: finite strain (FS) and preserving principal direction (PPD). However, FS scheme limits its application on rigid deformation and PPD scheme suffers from computation load caused by the iteration. In order to overcome these shortcomings, we propose a canonical form-based affine registration of DTI, named as CFARD. We transform voxel sets into canonical forms where an affine registration is simplified as a rigid registration, while still preserves the effects of non-rigid components. This transforming thus extends the application of FS scheme to affine deformation. Furthermore, to reduce computation load, the quaternion technique is skillfully employed to seek a closed-form solution of the optimal rotation where no iteration is required. Extensive experiments are conducted on synthetic and real DTI data from the human brain. In contrast to four existing algorithms, the proposed CFARD improves the consistency between tensor orientation and the anatomical structures after deformation, and performs a better balance between accuracy and computational complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Alexander DC, Gee JC (2000) Elastic matching of diffusion tensor images. Comput Vis Image Underst 77(2):233–250

    Article  Google Scholar 

  2. Arena P, Fortuna L, Muscato G, Xibilia MG (1997) Multilayer perceptrons to approximate quaternion valued functions. Neural Netw 10(2):335–342

    Article  Google Scholar 

  3. Barmpoutis A, Vemuri BC (2010) A unified framework for estimating diffusion tensors of any order with symmetric positive-definite constraints. In: 2010 IEEE international symposium on biomedical imaging: from nano to macro, 1385–1388, IEEE

  4. Cao Y, Miller MI, Mori S, Winslow RL, Younes L (2006) Diffeomorphic matching of diffusion tensor images. In: Conference on Computer Vision and Pattern Recognition Workshop, 2006. CVPRW’06, 67–67, IEEE

  5. Chou JC (1992) Quaternion kinematic and dynamic differential equations. IEEE Trans Robot Autom 8(1):53–64

    Article  Google Scholar 

  6. Dai JH, Han H, Hu Q, Liu M (2016) Discrete particle swarm optimization approach for cost sensitive attribute reduction. Knowl-Based Syst 102:116–126

    Article  Google Scholar 

  7. Dai JH, Hu Q, Zhang J, Hu H, Zheng N (2016) Attribute selection for partially labeled categorical data by rough set approach. IEEE Trans Cybern 47(9):2460–2471. https://doi.org/10.1109/TCYB.2016.2636339

    Article  Google Scholar 

  8. Fangt Y, Hsieh C, Kim M, Chang J, Woo T (1998) Real time motion fairing with unit quaternions. Comput Aided Des 30(3):191–198

    Article  MATH  Google Scholar 

  9. Gallier J (2011) Geometric methods and applications: for computer science and engineering, vol 38. Springer Science & Business Media, Berlin

    Book  MATH  Google Scholar 

  10. Hamilton WR (1844) On a new species of imaginary quantities connected with a theory of quaternions. In: Proceedings of the Royal Irish Academy, vol 2, pp 424–434

  11. Holzapfel G (2000) Nonlinear solid mechanics a continuum approach for engineering. Wiley, England

    MATH  Google Scholar 

  12. Horn BK (1987) Closed-form solution of absolute orientation using unit quaternions. JOSA A 4(4):629–642

    Article  Google Scholar 

  13. Jia D, Goh A, Qiu A (2012) Diffeomorphic metric mapping of high angular resolution diffusion imaging based on riemannian structure of orientation distribution functions. IEEE Trans Med Imaging 31(5):1021–33

    Article  Google Scholar 

  14. Jiang H, van Zijl PC, Kim J, Pearlson GD, Mori S (2006) Dtistudio: resource program for diffusion tensor computation and fiber bundle tracking. Comput Methods Prog Biomed 81(2):106–116

    Article  Google Scholar 

  15. Jiawei H, Xiaonan T (1988) A new approach to point pattern matching. In: 9th International Conference on Pattern Recognition, 1988, 82–84, IEEE

  16. Keihaninejad S, Zhang H, Ryan NS, Malone IB, Modat M, Cardoso MJ, Cash DM, Fox NC, Ourselin S (2013) An unbiased longitudinal analysis framework for tracking white matter changes using diffusion tensor imaging with application to Alzheimer’s disease. NeuroImage 72:153–163

    Article  Google Scholar 

  17. Khader M, Schiavi E, Hamza AB (2017) A multicomponent approach to nonrigid registration of diffusion tensor images. Appl Intell 46(2):241–253

    Article  Google Scholar 

  18. Kuipers J (2002) Quaternions and rotations: a primer with applications to orbits, aerospace, and virtual reality

  19. Li J, Shi Y, Tran G, Dinov I (2014) Fast local trust region technique for diffusion tensor registration using exact reorientation and regularization. IEEE Trans Med Imaging 33(5):1005–1022

    Article  Google Scholar 

  20. Liu W, Chen L, Cai H, Qiu H, Fei N (2016) Adaptive registration of diffusion tensor images on lie groups. Opt Rev 23(4):1–14

    Article  Google Scholar 

  21. Piegl L (1991) On nurbs: a survey. IEEE Comput Graph Appl 11(1):55–71

    Article  Google Scholar 

  22. Pierpaoli C, Jezzard P, Basser PJ, Barnett A, Di Chiro G (1996) Diffusion tensor mr imaging of the human brain. Radiology 201(3):637–648

    Article  Google Scholar 

  23. Shoemake K (1985) Animating rotation with quaternion curves. In: ACM SIGGRAPH computer graphics, 19(3), 245–254, ACM

  24. Sprinzak J, Werman M (1994) Affine point matching. Pattern Recogn Lett 15(4):337–339

    Article  Google Scholar 

  25. Stejskal EO, Tanner JE (1965) Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys 42(1):288–292

    Article  Google Scholar 

  26. Sweet A, Pennec X (2010) Log-domain diffeomorphic registration of diffusion tensor images. In: Biomedical Image Registration, 198–209, Springer

  27. Van Hecke W, Leemans A, D’Agostino E, De Backer S, Vandervliet E, Parizel PM, Sijbers J (2007) Nonrigid coregistration of diffusion tensor images using a viscous fluid model and mutual information. IEEE Trans Med Imaging 26 (11):1598–1612

    Article  Google Scholar 

  28. Wakana S, Jiang H, Nagae-Poetscher LM, Van Zijl PC, Mori S (2004) Fiber tract–based atlas of human white matter anatomy 1. Radiology 230(1):77–87

    Article  Google Scholar 

  29. Wang Y, Gupta A, Liu Z, Zhang H, Escolar ML, Gilmore JH, Gouttard S, Fillard P, Maltbie E, Gerig G et al (2011) Dti registration in atlas based fiber analysis of infantile krabbe disease. Neuroimage 5(4):1577–1586

    Article  Google Scholar 

  30. Woods RP, Grafton ST, Holmes CJ, Cherry SR, Mazziotta JC (1998) Automated image registration: I. general methods and intrasubject, intramodality validation. J Comput Assist Tomogr 22(1):139–152

    Article  Google Scholar 

  31. Yang F, Zhu Y-M, Magnin IE, Luo J-H, Croisille P, Kingsley PB (2012) Feature-based interpola- tion of diffusion tensor fields and application to human cardiac dt-mri. Med Image Anal 16(2):459–481

    Article  Google Scholar 

  32. Yang J, Shen D, Davatzikos C, Verma R (2008) Diffusion tensor image registration using tensor geometry and orientation features. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, 905–913, Springer

  33. Yeo BT, Vercauteren T, Fillard P, Peyrat JM, Pennec X, Golland P, Ayache N, Clatz O (2009) Dt-refind: diffusion tensor registration with exact finite-strain differential. IEEE Trans Med Imaging 28(12):1914–28

    Article  Google Scholar 

  34. Zhang H, Yushkevich PA, Alexander DC, Gee JC (2006) Deformable registration of diffusion tensor mr images with explicit orientation optimization. Med Image Anal 10(5):764–785

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by the National High Technology Research and Development Program(“863”program) of China(NO.2015AA016010), Application Science and Technology Planning Project of Guangdong Province(NO.2015B010131002), and Major Science and Technology Projects of Dongguan (NO.2015215102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Liu.

Appendix

Appendix

Let rotation matrix \(R\) transform \(S_{f}^{(k)}\) to \(S_{r}^{(k)}\),

$$ S_{r}^{(k)}=RS_{f}^{(k)}. $$
(32)

Consider rotation by the unit quaternion \(q\).

$$ S_{r}^{(k)}=qS_{f}^{(k)}q^{*}. $$
(33)

We try to seek \(q\) by maximizing,

$$ \sum\limits_{k = 1}^{n}(qS_{r}^{(k)}q^{*})S_{f}^{(k)}. $$
(34)

According to the property of products of quaternions in Section 2.2, (33) can be rewritten as the following form,

$$ \sum\limits_{k = 1}^{n}(qS_{r}^{(k)})\dot(S_{f}^{(k)}q). $$
(35)

Assume \(S_{r}^=({S_{x}^{r}}, {S_{y}^{r}}, {S_{z}^{r}})\), \(S_{f}^=({S_{f}^{r}}, {S_{f}^{r}}, {S_{f}^{r}})\), then use multiplication of quaternions, we get,

$$ qS_{r}^{(k)}=\left[ \begin{array}{llll} 0&-{S_{x}^{r}}&-{S_{y}^{r}}&-{S_{z}^{r}}\\ {S_{x}^{r}}&0&{S_{z}^{r}}&-{S_{y}^{r}}\\ {S_{y}^{r}}&-{S_{z}^{r}}&0&{S_{x}^{r}}\\ {S_{z}^{r}}&{S_{y}^{r}}&-{S_{x}^{r}}&0 \end{array} \right]^{(k)}q=R_{r}q, $$
(36)

and

$$ S_{f}^{(k)}q=\left[ \begin{array}{llll} 0&-{S_{x}^{f}}&-{S_{y}^{f}}&-{S_{z}^{f}}\\ {S_{x}^{f}}&0&-{S_{z}^{f}}&{S_{y}^{f}}\\ {S_{y}^{f}}&-{S_{z}^{f}}&0&{S_{x}^{f}}\\ {S_{z}^{f}}&-{S_{y}^{f}}&{S_{x}^{f}}&0 \end{array} \right]^{(k)}q=R_{f}q. $$
(37)

thus, the problem of maximizing (34) is equivalent to,

$$ \sum\limits_{k = 1}^{n}(R_{r}q)\dot(R_{f}q)=\sum\limits_{k = 1}^{n}q^{\mathrm{T}}(R_{r}^{\mathrm{T}}\dot R_{f})q. $$
(38)

finally, we have,

$$ \sum\limits_{k = 1}^{n}q^{\mathrm{T}}N_{i}q=q^{\mathrm{T}}Nq.. $$
(39)

According to the method of [12], the optimal rotation \(q\) corresponds to the eigenvector of the symmetric matrix \(N\) associated with the most positive eigenvalue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Chen, L., Cai, H. et al. A canonical form-based approach to affine registration of DTI. Multimed Tools Appl 77, 19697–19718 (2018). https://doi.org/10.1007/s11042-017-5416-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-5416-0

Keywords

Navigation