Skip to main content
Log in

Perceptual rate distortion optimization of 3D–HEVC using PSNR-HVS

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Improved compression efficiency is highly desirable in the transmission of 3D video and its storage. 3D–HEVC achieves higher compression efficiency compared to the simulcast HEVC or disparity-compensated multi-view video coding (MVC). In 3D–HEVC, the mean square error (MSE) is used to measure distortion in the rate distortion optimization process. However, MSE is not a good measure to use for measuring visual quality, as it poorly correlates with human perception. We propose to integrate a perceptual video quality metric inside the rate distortion optimization process of the 3D–HEVC. Specifically, in the coding unit (CU) mode selection process, PSNR-HVS is used as a measure for distortion. PSNR-HVS is based on the characteristics of the human visual system (HVS). Performance evaluations show that the proposed approach improves the compression efficiency of 3D–HEVC for multi-view videos by 2.78%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. 3D–HEVC Reference Software, HTM-10. (2017) Available: https://hevc.hhi.fraunhofer.de/svn/svn_3DVCSoftware/tags/HTM-10.0

  2. Assembly IR (2003) Methodology for the subjective assessment of the quality of television pictures. International Telecommunication Union

  3. Aswathappa BH, Rao KR (2010) Rate-distortion optimization using structural information in H. 264 strictly intra-frame encoder. In System Theory (SSST), 2010 42nd Southeastern Symposium on 2010 Mar 7 (pp. 367–370). IEEE

  4. Banitalebi Dehkordi A (2015) 3D video quality assessment (Doctoral dissertation, University of British Columbia)

  5. Banitalebi-Dehkordi A, Pourazad MT, Nasiopoulos P (2013, May) 3D video quality metric for mobile applications. In Acoustics, Speech and Signal Processing (ICASSP), 2013 I.E. International Conference on 2013 May 26 (pp. 3731–3735). IEEE

  6. Banitalebi-Dehkordi A, Pourazad MT, Nasiopoulos P (2013, October) A study on the relationship between depth map quality and the overall 3D video quality of experience. In 3DTV-Conference: The True Vision-Capture, Transmission and Dispaly of 3D Video (3DTV-CON), 2013 Oct 7 (pp. 1–4). IEEE

  7. Banitalebi-Dehkordi A, Pourazad MT, Nasiopoulos P (2013) 3D video quality metric for 3D video compression. In IVMSP Workshop, 2013 I.E. 11th 2013 Jun 10 (pp. 1–4). IEEE

  8. Banitalebi-Dehkordi A, Pourazad MT, Nasiopoulos P (2014) Effect of high frame rates on 3D video quality of experience. In Consumer Electronics (ICCE), 2014 I.E. International Conference on 2014 Jan 10 (pp. 416–417). IEEE

  9. Banitalebi-Dehkordi A, Pourazad MT, Nasiopoulos P (2015) The effect of frame rate on 3D video quality and bitrate. Springer J 3D Res 6(1):5–34. https://doi.org/10.1007/s13319-014-0034-3

    Article  Google Scholar 

  10. Banitalebi-Dehkordi A, Pourazad MT, Nasiopoulos P (2016) An efficient human visual system based quality metric for 3D video. Multimed Tools Appl 75(8):4187–4215

    Article  Google Scholar 

  11. Benoit A, Le Callet P, Campisi P et al (2009) Quality assessment of stereoscopic images. EURASIP J Image Vid Process 2008(1):1–13

    Google Scholar 

  12. Benzie P, Watson J, Surman P et al (2007) A survey of 3DTV displays: techniques and technologies. IEEE Trans Circuits Sys Vid Technol 17(11):1647–1658

    Article  Google Scholar 

  13. Bjontegaard G (2001) Calcuation of average PSNR differences between RD-curves. Doc. VCEG-M33 ITU-T Q6/16, Austin, 2-4

  14. Boev A, Gotchev A, Egiazarian K, Aksay A, Akar GB (2006) Towards compound stereo-video quality metric: a specific encoder-based framework. In Image Analysis and Interpretation, 2006 I.E. Southwest Symposium on 2006 Mar 26 (pp. 218–222). IEEE

  15. Chen Y, Wang Y, Ugur K et al (2009) The emerging MVC standard for 3D video services. EURASIP J Appl Signal Process 2009:8

    Google Scholar 

  16. Chen Y, Tech G, Wegner K, Yea S (2015) Test model 11 of 3D-HEVC and MV-HEVC. JCT-3V of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, document JCT3V-K1003, Geneva

  17. Dufaux F, Pesquet-Popescu B, Cagnazzo M (2013) Emerging technologies for 3D video: creation, coding, transmission and rendering. John Wiley & Sons, Hoboken

    Book  Google Scholar 

  18. Egiazarian K, Astola J, Ponomarenko N, Lukin V, Battisti F, Carli M (2006) New full-reference quality metrics based on HVS. In Proceedings of the Second International Workshop on Video Processing and Quality Metrics, vol. 4

  19. Gao Y, Dai Q (2014) View-based 3D object retrieval: challenges and approaches. IEEE MultiMedia 21(3):52–57

    Article  Google Scholar 

  20. Hewage C, Worrall ST, Dogan S et al (2008) Prediction of stereoscopic video quality using objective quality models of 2-D video. Electron Lett 44(16):963–965

    Article  Google Scholar 

  21. Hewage CT, Worrall ST, Dogan S, Villette S, Kondoz AM (2009) Quality evaluation of color plus depth map-based stereoscopic video. IEEE J Select Topics Signal Process 3(2):304–318 Chicago

    Article  Google Scholar 

  22. Huynh-Thu Q, Ghanbari M (2008) Scope of validity of PSNR in image/video quality assessment. Electron Lett 44(13):800–801

    Article  Google Scholar 

  23. Huynh-Thu Q, Ghanbari M (2012) The accuracy of PSNR in predicting video quality for different video scenes and frame rates. Telecommun Syst 49(1):35–48

    Article  Google Scholar 

  24. Huynh-Thu Q, Le Callet P, Barkowsky M (2010) Video quality assessment: from 2D to 3D—challenges and future trends. In Image Processing (ICIP), 2010 17th IEEE International Conference on 2010 Sep 26 (pp. 4025–4028). IEEE

  25. Huynh-Thu Q, Le Callet P, and Barkowsky M (2010) Video quality assessment: from 2D to 3D - challenges and future trends. 17th IEEE International Conference on image processing (ICIP), Hong Kong SAR China. pp. 4025-4028

  26. ITU-T RECOMMENDATION P (1999) Subjective video quality assessment methods for multimedia applications. 34–35

  27. Lewandowski F, Paluszkiewicz M, Grajek T et al (2013) Methodology for 3D video subjective quality evaluation. Int J Electron Telecom 59(1):25–32

    Google Scholar 

  28. Mai Z, Yang C, Po L et al (2005) A new rate-distortion optimization using structural information in H. 264 I-frame encoder. In: anonymous international conference on advanced concepts for intelligent vision systems. Springer, p 435

  29. Mai ZY, Yang CL, Xie SL (2005) Improved best prediction mode (s) selection methods based on structural similarity in H. 264 I-frame encoder. In Systems, Man and Cybernetics, 2005 I.E. International Conference on 2005 Oct 10 (Vol. 3, pp. 2673–2678). IEEE

  30. Mai ZY, Yang CL, Kuang KZ, Po LM (2006) A novel motion estimation method based on structural similarity for H. 264 inter prediction. In Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings. 2006 I.E. International Conference on 2006 May 14 (Vol. 2, pp. II-II). IEEE

  31. McCann K, Bross B, HanWJ, Kim IK, Sugimoto K, Sullivan GJ (2013) High efficiency video coding (HEVC) test model 13 (HM 13) encoder description, joint collaborative team on video coding (JCT-VC), document JCTVC-O1002, Geneva

  32. MPEG Video and Requirements Group, Call for Proposals on 3D Video Coding Technology (2011) document N12036, Geneva

  33. Müller, K, & Vetro, A (2014) Common test conditions of 3DV Core experiments, document JCT3V-G1100. San Jose

  34. Muller K, Merkle P, Tech G, Wiegand T (2012) 3D video coding with depth modeling modes and view synthesis optimization. In Signal & Information Processing Association Annual Summit and Conference (APSIPA ASC), 2012 Asia-Pacific 2012 Dec 3 (pp. 1–4). IEEE

  35. Müller K, Schwarz H, Marpe D, Bartnik C, Bosse S, Brust H et al (2013) 3D high-efficiency video coding for multi-view video and depth data. IEEE Trans Image Process 22(9):3366–3378

    Article  MathSciNet  MATH  Google Scholar 

  36. Qin C, Chen X, Ye D, Wang J, Sun X (2016) A novel image hashing scheme with perceptual robustness using block truncation coding. Inf Sci 361:84–99

    Article  Google Scholar 

  37. Qin C, Sun M, Chang CC (2018) Perceptual hashing for color images based on hybrid extraction of structural features. Signal Process 142:194–205

    Article  Google Scholar 

  38. Rehman A, Wang Z (2012) SSIM-inspired perceptual video coding for HEVC. In Multimedia and Expo (ICME), 2012 I.E. International Conference on 2012 Jul 9 (pp. 497–502). IEEE

  39. (2016) Requirements for a Future Video Coding Standard v4, ISO/IEC JTC 1/SC 29/WG 11 Coding of Moving Pictures and Audio, ISO/IEC JTC1/SC29/WG11, N16359, Geneva, June 2016

  40. Schwarz H, Wiegand T (2012) Inter-view prediction of motion data in multiview video coding. In Picture Coding Symposium (PCS), 2012 May 7 (pp. 101–104). IEEE

  41. Schwarz H, Bartnik C, Bosse S, Brust H, Hinz T, Lakshman H, Marpe D, Merkle P, Müller K, Rhee H, Tech G (2012) 3D video coding using advanced prediction, depth modeling, and encoder control methods. In Picture Coding Symposium (PCS), 2012 May 7 (pp. 1–4). IEEE

  42. Sullivan GJ, Ohm J, Han W et al (2012) Overview of the high efficiency video coding (HEVC) standard. IEEE Trans Circuits Syst Vid Technol 22(12):1649–1668

    Article  Google Scholar 

  43. Sullivan GJ, Boyce JM, Chen Y, Ohm JR, Segall CA, Vetro A (2013) Standardized extensions of high efficiency video coding (HEVC). IEEE J Select Topics Signal Process 7(6):1001–1016

    Article  Google Scholar 

  44. Sze V, Budagavi M, Sullivan GJ (2014) High efficiency video coding (HEVC). Integrated Circuit and Systems, Algorithms and Architectures, pp 1–375. https://doi.org/10.1007/978-3-319-06895-4

  45. Tech G, Schwarz H, Müller K, Wiegand T (2012) 3D video coding using the synthesized view distortion change. In Picture Coding Symposium (PCS), 2012 May 7 (pp. 25–28). IEEE

  46. Tech G, Chen Y, Müller K et al (2016) Overview of the multiview and 3D extensions of high efficiency video coding. IEEE Tran Circuits Syst Vid Technol 26(1):35–49

    Article  Google Scholar 

  47. Valizadeh S, Nasiopoulos P, Ward R (2015) Perceptually-friendly rate distortion optimization in high efficiency video coding. In Signal Processing Conference (EUSIPCO), 2015 23rd European 2015 Aug 31 (pp. 115–119). IEEE

  48. Valizadeh S, Nasiopoulos P, Ward R (2016) Optimizing the Lagrange multiplier in perceptually-friendly high efficiency video coding for mobile applications. In Computing, Networking and Communications (ICNC), 2016 International Conference on 2016 Feb 15 (pp. 1–4). IEEE

  49. Vetro A, Wiegand T, Sullivan GJ (2011) Overview of the stereo and multiview video coding extensions of the H. 264/MPEG-4 AVC standard. Proc IEEE 99(4):626–642

    Article  Google Scholar 

  50. Wallace G (1991) The JPEG still picture compression standard. Commun ACM 34(4):30–44

  51. Wan, Z, & Bovik, A C (2009) Mean squared error: Love it or leave it?. IEEE Signal Processing Magazine, 98–117

  52. Wang S, Rehman A, Wang Z et al (2013) Perceptual video coding based on SSIM-inspired divisive normalization. IEEE Trans Image Process 22(4):1418–1429

    Article  MathSciNet  MATH  Google Scholar 

  53. Wang D, Wang B, Zhao S, Yao H (2017) View-based 3D object retrieval with discriminative views. Neurocomputing 252:58–66

    Article  Google Scholar 

  54. Yang CL, Wang HX, Po LM (2007) Improved inter prediction based on structural similarity in H. 264. In Signal Processing and Communications, 2007. ICSPC 2007. IEEE International Conference on 2007 Nov 24 (pp. 340–343). IEEE

  55. Yang CL, Leung RK, Po LM, Mai ZY (2009) An SSIM-optimal H. 264/AVC inter frame encoder. In Intelligent Computing and Intelligent Systems, 2009. ICIS 2009. IEEE International Conference on 2009 Nov 20 (Vol. 4, pp. 291–295). IEEE

  56. Yasakethu SLP, Hewage CT, Fernando WAC, Kondoz AM (2008) Quality analysis for 3D video using 2D video quality models. IEEE Trans Consum Electron 54(4):1135–1141

    Article  Google Scholar 

  57. Yeo C, Tan HL, Tan YH (2013) On rate distortion optimization using SSIM. IEEE Trans Circuits Syst for Vid Technol 23(7):1170–1181

    Article  Google Scholar 

  58. You J, Xing L, Perkis A, Wang X (2010) Perceptual quality assessment for stereoscopic images based on 2D image quality metrics and disparity analysis. In Proc. of International Workshop on Video Processing and Quality Metrics for Consumer Electronics, Scottsdale

    Google Scholar 

  59. Zhao T, Zeng K, Rehman A, Wang Z (2013) On the use of SSIM in HEVC. In Signals, Systems and Computers, 2013 Asilomar Conference on 2013 Nov 3 (pp. 1107–1111). IEEE

  60. Zhao S, Yao H, Zhang Y, Wang Y, Liu S (2015) View-based 3D object retrieval via multi-modal graph learning. Signal Process 31(112):110–118

    Article  Google Scholar 

  61. Zhao S, Chen L, Yao H, Zhang Y, Sun X (2015) Strategy for dynamic 3D depth data matching towards robust action retrieval. Neurocomputing 151:533–543

    Article  Google Scholar 

  62. Zhao P, Liu Y, Liu J, Yao R, Ci S (2016) Perceptual rate-distortion optimization for H. 264/AVC video coding from both signal and vision perspectives. Multimed Tools Appl 75(5):2781–2800

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the NPRP grant # NPRP 4-463-2-172 from the Qatar National Research Fund (a member of the Qatar Foundation). The statements made herein are solely the responsibility of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sima Valizadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valizadeh, S., Nasiopoulos, P. & Ward, R. Perceptual rate distortion optimization of 3D–HEVC using PSNR-HVS. Multimed Tools Appl 77, 22985–23008 (2018). https://doi.org/10.1007/s11042-017-5486-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-5486-z

Keywords

Navigation