Skip to main content

Advertisement

Log in

Parallel image encryption with bitplane decomposition and genetic algorithm

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Image encryption is an efficient technique to protect image content from unauthorized parties. In this paper a parallel image encryption method based on bitplane decomposition is proposed. The original grayscale image is converted to a set of binary images by local binary pattern (LBP) technique and bitplane decomposition (BPD) methods. Then, permutation and substitution steps are performed by genetic algorithm (GA) using crossover and mutation operations. Finally, these scrambled bitplanes are combined together to obtain encrypted image. Instead of random population selection in GA, a deterministic method with security keys is utilized to improve security level. The proposed encryption method has parallel processing capability for multiple bitplanes encryption. This distributed GA with multiple populations increases encryption speed and makes it suitable for real-time applications. Simulations and security analysis are done to demonstrate efficiency of our algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Abanda Y, Tiedeu A (2016) Image encryption by chaos mixing. IET Image Process 10(10):742–750

    Article  Google Scholar 

  2. Auli-Llinas F, Marcellin MW (2012) Scanning order strategies for bitplane image coding. IEEE Trans Image Process 21(4):1920–1933

    Article  MathSciNet  MATH  Google Scholar 

  3. Chai X, Gan Z, Zhang M (2017) A fast chaos-based image encryption scheme with a novel plain image-related swapping block permutation and block diffusion. Multimed Tools Appl 76(14):15561–15585

    Article  Google Scholar 

  4. Chai X, Gan Z, Yanga K, Chen Y, Liu X (2017) An image encryption algorithm based on the memristive hyperchaotic system, cellular automata and DNA sequence operations. Signal Process Image Commun 57:6–19

    Article  Google Scholar 

  5. Chen T-H, Li K-C (2012) Multi-image encryption by circular random grids. Inf Sci 189:255–265

    Article  MathSciNet  Google Scholar 

  6. Daemen J, Rijmen V (1999) AES proposal: Rijndael. http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf

  7. Davarzani R, Yaghmaie K, Mozaffari S, Tapak M (2013) Copy-move forgery detection using multi-resolution local binary patterns. Forensic Sci Int 231(1):61–72

    Article  Google Scholar 

  8. Davarzani R, Mozaffari S, Yaghmaie K (2016) Perceptual image hashing using center-symmetric local binary patterns. Multimed Tools Appl 75(8):4639–4667

    Article  Google Scholar 

  9. Enayatifar R, Hanan A, Isnin AIF (2014) Chaos-based image encryption using a hybrid genetic algorithm and a DNA sequence. Opt Lasers Eng 56:83–93

    Article  Google Scholar 

  10. Engel D, Pschernig E, Uhl A (2008) An analysis of lightweight encryption schemes for fingerprint images. IEEE Trans Inf Forensics Secur 3(2):173–182

    Article  Google Scholar 

  11. Faraoun KM (2014) A genetic strategy design of cellular automata based block ciphers. Expert Syst Appl 41(17):7958–7967

    Article  Google Scholar 

  12. Gonzalez RC, Woods RE (2002) Digital image processing, second edition. Prentice Hall, Upper Saddle River

    Google Scholar 

  13. Hamza R (2017) A novel pseudo random sequence generator for image-cryptographic applications. J Inf Secur Appl 35:119–127

    Google Scholar 

  14. Han J-W, Park C-S, Ryu D-H, Kim E-S (1999) Optical image encryption based on XOR operations. Opt Eng 38(1):47–54

    Article  Google Scholar 

  15. Li C, Lin D, Lü J (2017) Cryptanalyzing an image-scrambling encryption algorithm of pixel bits. IEEE MultiMedia 24(3):64–71

    Article  Google Scholar 

  16. Li J, Zheng J, Whitlock P (2018) Efficient deterministic and non-deterministic pseudorandom number generation. Math Comput Simul 143:114–124

    Article  MathSciNet  Google Scholar 

  17. Lian S (2008) Multimedia content encryption techniques and applications. CRC Press, Boca Raton

    MATH  Google Scholar 

  18. Liu Z, Xu L, Liu T, Chen H, Li P, Lin C, Liu S (2011) Color image encryption by using Arnold transform and color-blend operation in discrete cosine transform domains. Opt Commun 284(1):123–128

    Article  Google Scholar 

  19. Machicao J, Bruno OM (2017) Improving the pseudo-randomness properties of chaotic maps using deep-zoom. Chaos Interdisciplinary J Nonlinear Sci 27:5

    MathSciNet  MATH  Google Scholar 

  20. Moon D, Chung Y, Pan SB, Moon K, Chung K (2006) An efficient selective encryption of fingerprint images for embedded processors. ETRI J 28(4):444–452

    Article  Google Scholar 

  21. National Institute of Standards and Technology (1999) Data encryption standard (DES). http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf

  22. Park M, Rodgers JC, Lathrop DP (2015) True random number generation using CMOS Boolean chaotic oscillator. Microelectron J 46(12):1364–1370

    Article  Google Scholar 

  23. Parvin Z, Seyedarabi H, Shamsi M (2016) A new secure and sensitive image encryption scheme based on new substitution with chaotic function. Multimed Tools Appl 75(17):10631–10648

    Article  Google Scholar 

  24. Rostami MJ, Shahba A, Saryazdi S, Nezamabadi-pour H (2017) A novel parallel image encryption with chaotic windows based on logistic map. Comput Electr Eng 62:384–400

    Article  Google Scholar 

  25. Shen X, Dou S, Lei M, Chen Y (2016) Optical image encryption based on a joint Fresnel transform correlator with double optical wedges. Appl Opt 55(30):8513–8522

    Article  Google Scholar 

  26. Shen G, Liu F, Zhengxin F, Yu B (2017) Perfect contrast XOR-based visual cryptography schemes via linear algebra. Des Codes Crypt 85(1):15–37

    Article  MathSciNet  MATH  Google Scholar 

  27. Sivanandam SN, Deepa SN (2007) Introduction to genetic algorithms. Springer, Berlin

    MATH  Google Scholar 

  28. Taheri M, Mozaffari S (2012) Improving security of double random phase encoding with chaos theory using fractal images. ISC Int J Inf Secur 4(2):115–124

    Google Scholar 

  29. Taheri M, Mozaffari S, Keshavarzi P (2015) Cancelable face verification using optical encryption and authentication. JOSA A 32(10):1772–1779

    Article  Google Scholar 

  30. Talbi E-G (2009) Metaheuristics: from design to implementation. Wiley Publishing, New Jersey ISBN:0470278587 9780470278581

    Book  MATH  Google Scholar 

  31. Tang Z, Song J, Zhang X, Sun R (2016) Multiple-image encryption with bit-plane decomposition and chaotic maps. Opt Lasers Eng 80:1–11

    Article  Google Scholar 

  32. Wang XY, Xu DH (2014) A novel image encryption scheme based on Brownian motion and PWLC chaotic system. Nonlinear Dyn 75(1–2):345–353

    Article  Google Scholar 

  33. Wang X-y, Xue Q (2012) A new pseudo-random number generator based on CML and chaotic iteration. Nonlinear Dyn 70:1589–1592

    Article  MathSciNet  Google Scholar 

  34. Wang Y, YiZhao QZ, Lin Z (2018) Image encryption using partitioned cellular automata. Neurocomputing 275:1318–1332

    Article  Google Scholar 

  35. Ye G (2014) A block image encryption algorithm based on wave transmission and chaotic systems. Nonlinear Dynam 75(3):417–427

    Article  Google Scholar 

  36. Yuan S, Yang Y, Liu X, Zhou X, Wei Z (2018) Optical image transformation and encryption by phase-retrieval-based double random-phase encoding and compressive ghost imaging. Opt Lasers Eng 100:105–110

    Article  Google Scholar 

  37. Zhang Y, Tang Y (2018) A plaintext-related image encryption algorithm based on chaos. Multimed Tools Appl 77(6):6647–6669. https://doi.org/10.1007/s11042-017-4577-1

    Article  Google Scholar 

  38. Zhang D, Liao X, Yang B et al (2018) A fast and efficient approach to color-image encryption based on compressive sensing and fractional Fourier transform. Multimed Tools Appl 77(2):2191–2208. https://doi.org/10.1007/s11042-017-4370-1

    Article  Google Scholar 

  39. Zhang Y, Liu X, Sun M (2017) DNA based random key generation and management for OTP encryption. Biosystems 159:51–63

    Article  Google Scholar 

  40. Zhou Y, Panetta K, Agaian S, Chen CLP (2012) Image encryption using p-Fibonacci transform and decomposition. Opt Commun 285(5):594–608

    Article  Google Scholar 

  41. Zhou Y, Panett K, Sos A, Chen CLP (2012) Image encryption using P-Fibonacci transform and decomposition. Opt Commun 285:594–608

    Article  Google Scholar 

  42. Zhou Y, Panetta K, Agaian S, Chen CLP (2013) ( n, k, p)-Gray code for image systems. IEEE Trans Cybern 43(2):515–529

    Article  Google Scholar 

  43. Zhou Y, Weijia C, Chen CLP (2014) Image encryption using binary bitplane. Signal Process 100:197–207

    Article  Google Scholar 

  44. Zhou YC, Cao WJ, Chen CLP (2014) Image encryption using binary bitplane. Signal Process 100:197–207

    Article  Google Scholar 

  45. Zhu H, Zhao C, Zhang X (2013) A novel image encryption-compression scheme using hyper-chaos and Chinese remainder theorem. Signal Process 28(6):670–680

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Mozaffari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mozaffari, S. Parallel image encryption with bitplane decomposition and genetic algorithm. Multimed Tools Appl 77, 25799–25819 (2018). https://doi.org/10.1007/s11042-018-5817-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-5817-8

Keywords

Navigation